Spherical CNNs

Related tags

Deep Learnings2cnn
Overview

Spherical CNNs

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariance

Overview

This library contains a PyTorch implementation of the rotation equivariant CNNs for spherical signals (e.g. omnidirectional images, signals on the globe) as presented in [1]. Equivariant networks for the plane are available here.

Dependencies

(commands to install all the dependencies on a new conda environment)

conda create --name cuda9 python=3.6 
conda activate cuda9

# s2cnn deps
#conda install pytorch torchvision cuda90 -c pytorch # get correct command line at http://pytorch.org/
conda install -c anaconda cupy  
pip install pynvrtc joblib

# lie_learn deps
conda install -c anaconda cython  
conda install -c anaconda requests  

# shrec17 example dep
conda install -c anaconda scipy  
conda install -c conda-forge rtree shapely  
conda install -c conda-forge pyembree  
pip install "trimesh[easy]"  

Installation

To install, run

$ python setup.py install

Usage

Please have a look at the examples.

Please cite [1] in your work when using this library in your experiments.

Design choices for Spherical CNN Architectures

Spherical CNNs come with different choices of grids and grid hyperparameters which are on the first look not obviously related to those of conventional CNNs. The s2_near_identity_grid and so3_near_identity_grid are the preferred choices since they correspond to spatially localized kernels, defined at the north pole and rotated over the sphere via the action of SO(3). In contrast, s2_equatorial_grid and so3_equatorial_grid define line-like (or ring-like) kernels around the equator.

To clarify the possible parameter choices for s2_near_identity_grid:

max_beta:

Adapts the size of the kernel as angle measured from the north pole. Conventional CNNs on flat space usually use a fixed kernel size but pool the signal spatially. This spatial pooling gives the kernels in later layers an effectively increased field of view. One can emulate a pooling by a factor of 2 in spherical CNNs by decreasing the signal bandwidth by 2 and increasing max_beta by 2.

n_beta:

Number of rings of the kernel around the equator, equally spaced in [β=0, β=max_beta]. The choice n_beta=1 corresponds to a small 3x3 kernel in conv2d since in both cases the resulting kernel consists of one central pixel and one ring around the center.

n_alpha:

Gives the number of learned parameters of the rings around the pole. These values are per default equally spaced on the azimuth. A sensible number of values depends on the bandwidth and max_beta since a higher resolution or spatial extent allow to sample more fine kernels without producing aliased results. In practice this value is typically set to a constant, low value like 6 or 8. A reduced bandwidth of the signal is thereby counteracted by an increased max_beta to emulate spatial pooling.

The so3_near_identity_grid has two additional parameters max_gamma and n_gamma. SO(3) can be seen as a (principal) fiber bundle SO(3)→S² with the sphere S² as base space and fiber SO(2) attached to each point. The additional parameters control the grid on the fiber in the following way:

max_gamma:

The kernel spans over the fiber SO(2) between γ∈[0, max_gamma]. The fiber SO(2) encodes the kernel responses for every sampled orientation at a given position on the sphere. Setting max_gamma≨2π results in the kernel not seeing the responses of all kernel orientations simultaneously and is in general unfavored. Steerable CNNs [3] usually always use max_gamma=2π.

n_gamma:

Number of learned parameters on the fiber. Typically set equal to n_alpha, i.e. to a low value like 6 or 8.

See the deep model of the MNIST example for an example of how to adapt these parameters over layers.

Feedback

For questions and comments, feel free to contact us: geiger.mario (gmail), taco.cohen (gmail), jonas (argmin.xyz).

License

MIT

References

[1] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Spherical CNNs. International Conference on Learning Representations (ICLR), 2018.

[2] Taco S. Cohen, Mario Geiger, Jonas Köhler, Max Welling, Convolutional Networks for Spherical Signals. ICML Workshop on Principled Approaches to Deep Learning, 2017.

[3] Taco S. Cohen, Mario Geiger, Maurice Weiler, Intertwiners between Induced Representations (with applications to the theory of equivariant neural networks), ArXiv preprint 1803.10743, 2018.

Owner
Jonas Köhler
Jonas Köhler
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
The sixth place winning solution (6/220) in 2021 Gaofen Challenge.

SwinTransformer + OBBDet The sixth place winning solution (6/220) in the track of Fine-grained Object Recognition in High-Resolution Optical Images, 2

ming71 46 Dec 02, 2022
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

T-Fuzz T-Fuzz consists of 2 components: Fuzzing tool (TFuzz): a fuzzing tool based on program transformation Crash Analyzer (CrashAnalyzer): a tool th

HexHive 244 Nov 09, 2022
Deep Reinforcement Learning for Multiplayer Online Battle Arena

MOBA_RL Deep Reinforcement Learning for Multiplayer Online Battle Arena Prerequisite Python 3 gym-derk Tensorflow 2.4.1 Dotaservice of TimZaman Seed R

Dohyeong Kim 32 Dec 18, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Yolo ros - YOLO-ROS for HUAWEI ATLAS200

YOLO-ROS YOLO-ROS for NVIDIA YOLO-ROS for HUAWEI ATLAS200, please checkout for b

ChrisLiu 5 Oct 18, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022