Fuzzing tool (TFuzz): a fuzzing tool based on program transformation

Related tags

Deep LearningT-Fuzz
Overview

T-Fuzz

T-Fuzz consists of 2 components:

  • Fuzzing tool (TFuzz): a fuzzing tool based on program transformation
  • Crash Analyzer (CrashAnalyzer): a tool that verifies whether crashes found transformed programs are true bugs in the original program or not (coming soon).

OS support

The current version is tested only on Ubuntu-16.04, while trying to run the code, please use our tested OS.

Prerequisite

T-Fuzz system is built on several opensource tools.

Installing radare2

$ git clone https://github.com/radare/radare2.git
$ cd radare2
$ ./sys/install.sh

Installing python libraries

installing some dependent libraries

Note: to use apt-get build-dep, you need to uncomment the deb-src lines in your apt source file (/etc/apt/sources.list) and run apt-get update.

$ sudo apt-get install build-essential gcc-multilib libtool automake autoconf bison debootstrap debian-archive-keyring
$ sudo apt-get build-dep qemu-system
$ sudo apt-get install libacl1-dev

installing pip and setting up virtualenv & wrapper

$ sudo apt-get install python-pip python-virtualenv
$ pip install virtualenvwrapper

Add the following lines to your shell rc file (~/.bashrc or ~/.zshrc).

export WORKON_HOME=$HOME/.virtual_envs
source /usr/local/bin/virtualenvwrapper.sh

Creating a python virtual environment

$ mkvirtualenv tfuzz-env

Installing dependent libraries

This command will install all the dependent python libraries for you.

$ workon tfuzz-env
$ pip install -r req.txt

Fuzzing target programs with T-Fuzz

$ ./TFuzz  --program  
   
     --work_dir 
    
      --target_opts 
     

     
    
   

Where

  • : the path to the target program to fuzz
  • : the directory to save the results
  • : the options to pass to the target program, like AFL, use @@ as placeholder for files to mutate.

Examples

  1. Fuzzing base64 with T-Fuzz
$ ./TFuzz  --program  target_programs/base64  --work_dir workdir_base64 --target_opts "-d @@"
  1. Fuzzing uniq with T-Fuzz
$ ./TFuzz  --program  target_programs/uniq  --work_dir workdir_uniq --target_opts "@@"
  1. Fuzzing md5sum with T-Fuzz
$ ./TFuzz  --program  target_programs/md5sum  --work_dir workdir_md5sum --target_opts "-c @@"
  1. Fuzzing who with T-Fuzz
$ ./TFuzz  --program  target_programs/who  --work_dir workdir_who --target_opts "@@"

Using CrashAnalyzer to verify crashes

T-Fuzz CrashAnalyzer has been put in a docker image, however, it is still not working in all binaries we tested, we are still investigating it the cause.

Here is how:

Run the following command to run our docker image

$ [sudo] docker pull tfuzz/tfuzz-test
$ [sudo] docker run  --security-opt seccomp:unconfined -it tfuzz/tfuzz-test  /usr/bin/zsh 

In the container:

There are 3 directories:

  • release: contains code the built lava binaries
  • results: contains some results we found in lava-m dataset
  • radare2: it is a program used by T-Fuzz.

Currently, T-Fuzz may not work, because the tracer crashes accidentally. And the CrashAnalyzer can not work on all results. But some cases can be recovered.

For example:

To verify bugs in base64, first goto release and checkout ca_base64:

$ cd release
$ git checkout ca_base64

Then we use a transformed program to recover the crash in the original program:

  1. Choose a transformed program and run it on the input found by a fuzzer:
$ cd ~
$./results/ca_base64/554/base64_tfuzz_28/base64_tfuzz_28 -d ./results/ca_base64/554/crashing_inputs_from/results_saved_0_from 
[1]    131 segmentation fault (core dumped)  ./results/ca_base64/554/base64_tfuzz_28/base64_tfuzz_28 -d
  1. Recover an input from this transformed program and crashing input
). Re-hooking. WARNING | 2018-12-04 04:28:23,228 | angr.project | Address is already hooked, during hook(0x90dd000, ). Re-hooking. WARNING | 2018-12-04 04:28:23,229 | angr.simos.linux | Tracer has been heavily tested only for CGC. If you find it buggy for Linux binaries, we are sorry! Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 47))> Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 47))> Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 47))> Adding = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 47))> results saved to /root/base64_result/recover_0 ">
$ ./release/CrashAnalyzer  --tprogram ./results/ca_base64/554/base64_tfuzz_28/base64_tfuzz_28 --target_opts "-d @@" --crash_input ./results/ca_base64/554/crashing_inputs_from/results_saved_0_from --result_dir base64_result --save_to recover
WARNING | 2018-12-04 04:28:22,350 | angr.analyses.disassembly_utils | Your verison of capstone does not support MIPS instruction groups.
Trying /root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from
WARNING | 2018-12-04 04:28:23,228 | angr.project | Address is already hooked, during hook(0x9021cd0, 
        
         ). Re-hooking.
WARNING | 2018-12-04 04:28:23,228 | angr.project | Address is already hooked, during hook(0x90dd000, 
         
          ). Re-hooking.
WARNING | 2018-12-04 04:28:23,229 | angr.simos.linux | Tracer has been heavily tested only for CGC. If you find it buggy for Linux binaries, we are sorry!
Adding 
          
           = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_0_0_8 == 47))>
Adding 
           
            = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_1_1_8 == 47))>
Adding 
            
             = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_2_2_8 == 47))> Adding 
             
              = 65) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 90)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 97) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 122)), ((file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 >= 48) && (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 <= 57)), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 43), (file_/root/results/ca_base64/554/crashing_inputs_from/results_saved_0_from_9_3_3_8 == 47))> results saved to /root/base64_result/recover_0 
             
            
           
          
         
        

Then /root/base64_result/recover_0 is generated, we can use it to trigger a crash in the original program.

  1. verify the input by running the generated input on the original program
$ ./results/base64 -d base64_result/recover_0 
Successfully triggered bug 554, crashing now!
Successfully triggered bug 554, crashing now!
Successfully triggered bug 554, crashing now!
[1]    177 segmentation fault (core dumped)  ./results/base64 -d base64_result/recover_0
Owner
HexHive
Enforcing memory safety guarantees and type safety guarantees at the compiler and runtime level
HexHive
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Contains code for Deep Kernelized Dense Geometric Matching

DKM - Deep Kernelized Dense Geometric Matching Contains code for Deep Kernelized Dense Geometric Matching We provide pretrained models and code for ev

Johan Edstedt 83 Dec 23, 2022
Scalable Graph Neural Networks for Heterogeneous Graphs

Neighbor Averaging over Relation Subgraphs (NARS) NARS is an algorithm for node classification on heterogeneous graphs, based on scalable neighbor ave

Facebook Research 67 Dec 03, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Cmsc11 arcade - Final Project for CMSC11

cmsc11_arcade Final Project for CMSC11 Developers: Limson, Mark Vincent Peñafiel

Gregory 1 Jan 18, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Rethinking the Importance of Implementation Tricks in Multi-Agent Reinforcement Learning

RIIT Our open-source code for RIIT: Rethinking the Importance of Implementation Tricks in Multi-AgentReinforcement Learning. We implement and standard

405 Jan 06, 2023
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022