YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

Overview

YOLOX CondInst -- YOLOX 实例分割

version


demo_vis


前言

  1. 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想与本人探讨有关深度学习的相关知识,欢迎通过邮件交流
  2. 后续想解决模型的部署问题(c++)
  3. 后续想继续安装其他实例分割的代码

Update

  1. waiting ...

Some Ideas

  1. 在写推理的代码的时候,为了兼容eval的代码将做了很多split和cat的操作,这减慢了检测的速度,如果单纯想进行推理,可以将这部分的操作简化
  2. fp16模型存在问题,等待解决

Introduction

  1. For YOLOX, I change some codes and it will lead speed up.
  2. For CondInst, I just follow AdelaiDet and keep the same parameters as it.

Content

Quick Start

Firstly, create python environment

$ conda create -n yolox_inst python=3.7 -y

Then, clone the github of the item

$ git clone https://github.com/DDGRCF/YOLOX-CondInst.git

Then, you can adjust follow the original quick start

Instruction

Demo

I prepare the shell the demo script so that you can quickly run obb demo as:

$ cd my_exps
$ bash demo_inst.sh 0 /path/to/you
# PS: 0 is to assign the train environment to 0 gpu, you can change it by youself and /path/to/you is your demo images.

Train

I define the model default training parameters as following:

model max epoch enable_mixup enable_mosaic no aug epoch
yolox_s 24 True True 5
cls_loss_weight obj_loss_weight iou_loss_weight reg_loss_weight mask_loss_weight
1.0 1.0 5.0 1.0 5.0

Of course, this group parameters is not the best one, so you can try youself. And for the quick train, I have prepare the shell scripts, too.

$ cd my_exps
$ bash train_dota_obb.sh  0

As I set parameters above with 16 batch size per gpu (2gpu), the lresults on val dataset show as following: waiting ...

Test

I just follow original evaluation to test and eval

$ cd my_exps
$ ./eval_dota_obb.sh eval/test 0
# PS: for convenience, I set default parameters. So, eval means evaluating COCO val datasets.

Ralated Hub

Owner
DDGRCF
Focus on the region of Deep Learning in the computer vision.
DDGRCF
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
a pytorch implementation of auto-punctuation learned character by character

Learning Auto-Punctuation by Reading Engadget Articles Link to Other of my work 🌟 Deep Learning Notes: A collection of my notes going from basic mult

Ge Yang 137 Nov 09, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
Predict and time series avocado hass

RECOMMENDER SYSTEM MARKETING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU 1. Giới thiệu - Tiki là một hệ sinh thái thương mại "all in one", trong đó có tiki.vn, là

hieulmsc 3 Jan 10, 2022
A Benchmark For Measuring Systematic Generalization of Multi-Hierarchical Reasoning

Orchard Dataset This repository contains the code used for generating the Orchard Dataset, as seen in the Multi-Hierarchical Reasoning in Sequences: S

Bill Pung 1 Jun 05, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Official repository of the paper Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Soubhik Sanyal 689 Dec 25, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Multimodal commodity image retrieval 多模态商品图像检索

Multimodal commodity image retrieval 多模态商品图像检索 Not finished yet... introduce explain:The specific description of the project and the product image dat

hongjie 8 Nov 25, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Free course that takes you from zero to Reinforcement Learning PRO 🦸🏻‍🦸🏽

The Hands-on Reinforcement Learning course 🚀 From zero to HERO 🦸🏻‍🦸🏽 Out of intense complexities, intense simplicities emerge. -- Winston Churchi

Pau Labarta Bajo 260 Dec 28, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022