This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

Overview

ASL-Skeleton3D and ASL-Phono Datasets Generator

Build Code Quality DOI - ASL-Skeleton3D DOI - ASL-Phono

The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coordinates of the signers in the ASLLVD dataset. The ASL-Phono, in turn, introduces a novel linguistics-based representation, which describes the signs in the ASLLVD dataset in terms of a set of attributes of the American Sign Language phonology.

This is the source code used to generate the ASL-Skeleton3D and ASL-Phono datasets, which are based on the American Sign Language Lexicon Video Dataset (ASLLVD).

Learn more about the datasets:

  • Paper: "ASL-Skeleton3D and ASL-Phono: Two NovelDatasets for the American Sign Language" -> CIn

Download

Download the processed datasets by using the links below:

Generate

If you prefer generating the datasets by yourself, this section presents the requirements, setup and procedures to execute the code.

The generation is a process comprising the phases below, which start by the retrieval of the original ASLLVD samples for then computing additional properties, as follows:

  • download: original samples (video sequences) are obtained from the ASLLVD.
  • segment: signs are segmented from the original samples.
  • skeleton: signer skeletons are estimated.
  • normalize: the coordinates of the skeletons are normalized.
  • phonology: the phonological attributes are extracted.

Requirements

To generate the datasets, your system will need the following software configured:

OpenPose will require additional hardware and software configured which might include a NVIDIA GPU and related drivers and software. Please, check this link for the full list.

Recommended

If you prefer running a Docker container with the software requirements already configured, check out the link below -- just make sure to have a GPU available to your Docker environment:

Installation

Once observed the requirements, checkout the source code and execute the following command, which will setup your virtual environment and dependencies:

$ poetry install

Configuration

There is a set of files in the folder ./config that will help you to configure the parameters for generating the datasets. A good starting point is to take a look into the ./config/template.yaml file, which contains a basic structure with all the properties documented.

You will also find other predefined configurations that might help you to generate the datasets. Just remember to always review the comments inside of the files to fine-tune the execution to your environment.

Learn about the configurations available in the ./config/template.yaml, which contains the properties documented.

Generation

ASL-Skeleton3D

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-skeleton3d.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-skeleton3d.yaml

The resulting dataset will be located in the folder configured as output for the phase normalize, which by default is set to ../work/dataset/normalized.

ASL-Phono

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-phono.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-phono.yaml

The resulting dataset will be located in the folder configured as output for the phase phonology, which by default is set to ../work/dataset/phonology.

Logs

The logs from the datasets processing will be recorded in the file ./output.log.

Deprecated datasets

Previously, we introduced the dataset ASLLVD-Skeleton, which is now being replaced by the ASL-Skeleton3D. Read more about the old dataset in the links:

Citation

Please cite the following paper if you use this repository in your reseach.

@article{asl-datasets-2021,
  title     = {ASL-Skeleton3D and ASL-Phono: Two Novel Datasets for the American Sign Language},
  author    = {Cleison Correia de Amorim and Cleber Zanchettin},
  year      = {2021},
}

Contact

For any question, feel free to contact me at:

You might also like...
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

Source code for
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Comments
  • keypoint scale?

    keypoint scale?

    Hello this data looks to be amazing, but making use of it takes a bit more knowledge about how to actually translate the x,y values into usable points.

    It seems you guys have taken advantage of the --keypoint_scale in OpenPose - could you post something about how to translate these decimal numbers back into something more like a traditional x,y value? I'd like to draw these points using standard javascript, but right now I can't figure how how to rescale them back to size.

    Any help would be greatly appreciated!

    opened by mspanish 0
Releases(v1.0.0)
Owner
Cleison Amorim
Cleison Amorim
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

Phil Wang 146 Dec 06, 2022
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
Evaluation framework for testing segmentation networks in PyTorch

Evaluation framework for testing segmentation networks in PyTorch. What segmentation network to choose for next Kaggle competition? This benchmark knows the answer!

Eugene Khvedchenya 37 Apr 27, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

InsightFace: 2D and 3D Face Analysis Project on MXNet and PyTorch

Deep Insight 13.2k Jan 06, 2023
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Contrastively Disentangled Sequential Variational Audoencoder

Contrastively Disentangled Sequential Variational Audoencoder (C-DSVAE) Overview This is the implementation for our C-DSVAE, a novel self-supervised d

Junwen Bai 35 Dec 24, 2022
Clustergram - Visualization and diagnostics for cluster analysis in Python

Clustergram Visualization and diagnostics for cluster analysis Clustergram is a diagram proposed by Matthias Schonlau in his paper The clustergram: A

Martin Fleischmann 96 Dec 26, 2022