RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

Overview

RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

Website: https://robust.art

Paper: https://openreview.net/forum?id=wu1qmnC32fB

Document: https://robust.art/api

Leaderboard: http://robust.art/results

Abstract

Deep neural networks (DNNs) are vulnerable to adversarial noises, which motivates the benchmark of model robustness. Existing benchmarks mainly focus on evaluating the defenses, but there are no comprehensive studies on how architecture design and general training techniques affect robustness. Comprehensively benchmarking their relationships will be highly beneficial for better understanding and developing robust DNNs. Therefore, we propose RobustART, the first comprehensive Robustness investigation benchmark on ImageNet (including open-source toolkit, pre-trained model zoo, datasets, and analyses) regarding ARchitecture design (44 human-designed off-the-shelf architectures and 1200+ networks from neural architecture search) and Training techniques (10+ general techniques, e.g., data augmentation) towards diverse noises (adversarial, natural, and system noises). Extensive experiments revealed and substantiated several insights for the first time, for example: (1) adversarial training largely improves the clean accuracy and all types of robustness for Transformers and MLP-Mixers; (2) with comparable sizes, CNNs > Transformers > MLP-Mixers on robustness against natural and system noises; Transformers > MLP-Mixers > CNNs on adversarial robustness; for some light-weight architectures (e.g., EfficientNet, MobileNetV2, and Mo- bileNetV3), increasing model sizes or using extra training data reduces robustness. Our benchmark http://robust.art/: (1) presents an open-source platform for conducting comprehensive evaluation on different robustness types; (2) provides a variety of pre-trained models that can be utilized for downstream applications; (3) proposes a new perspective to better understand the mechanism of DNNs towards designing robust architectures, backed up by comprehensive analysis. We will continuously contribute to build this open eco-system for the community.

Installation

You use conda to create a virtual environment to run this project.

git clone --recurse-submodules https://github.com/DIG-Beihang/RobustART.git
cd robustART
conda create --name RobustART python=3.6.9
conda activate RobustART
pip install -r requirements.txt

After this, you should installl pytorch and torchvision package which meet your GPU and CUDA version according to https://pytorch.org

Quick Start

Common Setting

If you want to use this project to train or evaluate model(s), you can choose to create a work directory for saving config, checkpoints, scripts etc.

We have put some example for trainging or evlaluate. You can use it as follows

cd exprs/exp/imagenet-a_o-loop
bash run.sh

Add Noise

You can use the AddNoise's add_noise function to add multiple noise for one image or a batch of images The supported noise list is: ['imagenet-s', 'imagenet-c', 'pgd_linf', 'pgd_l2', 'fgsm', 'autoattack_linf', 'mim_linf', 'pgd_l1']

Example of adding ImageNet-C noise for image

from RobustART.noise import AddNoise
NoiseClass = AddNoise(noise_type='imagenet-c')
# set the config of one kind of noise
NoiseClass.set_config(corruption_name='gaussian_noise')
image_addnoise = NoiseClass.add_noise(image='test_input.jpeg')

Training Pipeline

We provided cls_solver solver to train a model with a specific config

Example of using base config to train a resnet50

cd exprs/robust_baseline_exp/resnet/resnet50
#Change the python path to the root path
PYTHONPATH=$PYTHONPATH:../../../../
srun -n8 --gpu "python -u -m RobustART.training.cls_solver --config config.yaml"

Evaluation Pipeline

We evaluate model(s) of different dataset, we provides several solver to evaluate the model on one or some specific dataset(s)

Example of evaluation on ImageNet-A and ImageNet-O dataset

cd exprs/exp/imagenet-a_0-loop
#Change the python path to the root path
PYTHONPATH=$PYTHONPATH:../../../
srun -n8 --gpu "python -u -m RobustART.training.cls_solver --config config.yaml"

Metrics

We provided metrics APIs, so that you can use these APIs to evaluate results for ImageNet-A,O,P,C,S and Adv noise.

from RobustART.metrics import ImageNetAEvaluator
metric = ImageNetAEvaluator()
metric.eval(res_file)

Citation

@article{tang2021robustart,
title={RobustART: Benchmarking Robustness on Architecture Design and Training Techniques},
author={Shiyu Tang and Ruihao Gong and Yan Wang and Aishan Liu and Jiakai Wang and Xinyun Chen and Fengwei Yu and Xianglong Liu and Dawn Song and Alan Yuille and Philip H.S. Torr and Dacheng Tao},
journal={https://openreview.net/forum?id=wu1qmnC32fB},
year={2021}}
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023
Source code for our EMNLP'21 paper 《Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning》

Child-Tuning Source code for EMNLP 2021 Long paper: Raise a Child in Large Language Model: Towards Effective and Generalizable Fine-tuning. 1. Environ

46 Dec 12, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Code of Puregaze: Purifying gaze feature for generalizable gaze estimation, AAAI 2022.

PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation Description Our work is accpeted by AAAI 2022. Picture: We propose a domain-general

39 Dec 05, 2022
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Implementation of the HMAX model of vision in PyTorch

PyTorch implementation of HMAX PyTorch implementation of the HMAX model that closely follows that of the MATLAB implementation of The Laboratory for C

Marijn van Vliet 52 Oct 13, 2022
General Virtual Sketching Framework for Vector Line Art (SIGGRAPH 2021)

General Virtual Sketching Framework for Vector Line Art - SIGGRAPH 2021 Paper | Project Page Outline Dependencies Testing with Trained Weights Trainin

Haoran MO 118 Dec 27, 2022
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks"

LUNAR Official Implementation of "LUNAR: Unifying Local Outlier Detection Methods via Graph Neural Networks" Adam Goodge, Bryan Hooi, Ng See Kiong and

Adam Goodge 25 Dec 28, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022