Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

Overview
SMOP is Small Matlab and Octave to Python compiler.
SMOP translates matlab to python. Despite obvious similarities between matlab and numeric python, there are enough differences to make manual translation infeasible in real life. SMOP generates human-readable python, which also appears to be faster than octave. Just how fast? Timing results for "Moving furniture" are shown in Table 1. It seems that for this program, translation to python resulted in about two times speedup, and additional two times speedup was achieved by compiling SMOP run-time library runtime.py to C, using cython. This pseudo-benchmark measures scalar performance, and my interpretation is that scalar computations are of less interest to the octave team.
octave-3.8.1 190 ms
smop+python-2.7 80 ms
smop+python-2.7+cython-0.20.1 40 ms
Table 1. SMOP performance  

News

October 15, 2014
Version 0.26.3 is available for beta testing. Next version 0.27 is planned to compile octave scripts library, which contains over 120 KLOC in almost 1,000 matlab files. There are 13 compilation errors with smop 0.26.3 .

Installation

  • Network installation is the best method if you just want it to run the example:

    $ easy_install smop --user
    
  • Install from the sources if you are behind a firewall:

    $ tar zxvf smop.tar.gz
    $ cd smop
    $ python setup.py install --user
    
  • Fork github repository if you need the latest fixes.

  • Finally, it is possible to use smop without doing the installation, but only if you already installed the dependences -- numpy and networkx:

    $ tar zxvf smop.tar.gz
    $ cd smop/smop
    $ python main.py solver.m
    $ python solver.py
    

Working example

We will translate solver.m to present a sample of smop features. The program was borrowed from the matlab programming competition in 2004 (Moving Furniture).To the left is solver.m. To the right is a.py --- its translation to python. Though only 30 lines long, this example shows many of the complexities of converting matlab code to python.

01   function mv = solver(ai,af,w)  01 def solver_(ai,af,w,nargout=1):
02   nBlocks = max(ai(:));          02     nBlocks=max_(ai[:])
03   [m,n] = size(ai);              03     m,n=size_(ai,nargout=2)
02 Matlab uses round brackets both for array indexing and for function calls. To figure out which is which, SMOP computes local use-def information, and then applies the following rule: undefined names are functions, while defined are arrays.
03 Matlab function size returns variable number of return values, which corresponds to returning a tuple in python. Since python functions are unaware of the expected number of return values, their number must be explicitly passed in nargout.
04   I = [0  1  0 -1];              04     I=matlabarray([0,1,0,- 1])
05   J = [1  0 -1  0];              05     J=matlabarray([1,0,- 1,0])
06   a = ai;                        06     a=copy_(ai)
07   mv = [];                       07     mv=matlabarray([])
04 Matlab array indexing starts with one; python indexing starts with zero. New class matlabarray derives from ndarray, but exposes matlab array behaviour. For example, matlabarray instances always have at least two dimensions -- the shape of I and J is [1 4].
06 Matlab array assignment implies copying; python assignment implies data sharing. We use explicit copy here.
07 Empty matlabarray object is created, and then extended at line 28. Extending arrays by out-of-bounds assignment is deprecated in matlab, but is widely used never the less. Python ndarray can't be resized except in some special cases. Instances of matlabarray can be resized except where it is too expensive.
08   while ~isequal(af,a)           08     while not isequal_(af,a):
09     bid = ceil(rand*nBlocks);    09         bid=ceil_(rand_() * nBlocks)
10     [i,j] = find(a==bid);        10         i,j=find_(a == bid,nargout=2)
11     r = ceil(rand*4);            11         r=ceil_(rand_() * 4)
12     ni = i + I(r);               12         ni=i + I[r]
13     nj = j + J(r);               13         nj=j + J[r]
09 Matlab functions of zero arguments, such as rand, can be used without parentheses. In python, parentheses are required. To detect such cases, used but undefined variables are assumed to be functions.
10 The expected number of return values from the matlab function find is explicitly passed in nargout.
12 Variables I and J contain instances of the new class matlabarray, which among other features uses one based array indexing.
14     if (ni<1) || (ni>m) ||       14         if (ni < 1) or (ni > m) or
               (nj<1) || (nj>n)                            (nj < 1) or (nj > n):
15         continue                 15             continue
16     end                          16
17     if a(ni,nj)>0                17         if a[ni,nj] > 0:
18         continue                 18           continue
19     end                          19
20     [ti,tj] = find(af==bid);     20         ti,tj=find_(af == bid,nargout=2)
21     d = (ti-i)^2 + (tj-j)^2;     21         d=(ti - i) ** 2 + (tj - j) ** 2
22     dn = (ti-ni)^2 + (tj-nj)^2;  22         dn=(ti - ni) ** 2 + (tj - nj) ** 2
23     if (d<dn) && (rand>0.05)     23         if (d < dn) and (rand_() > 0.05):
24         continue                 24             continue
25     end                          25
26     a(ni,nj) = bid;              26         a[ni,nj]=bid
27     a(i,j) = 0;                  27         a[i,j]=0
28     mv(end+1,[1 2]) = [bid r];   28         mv[mv.shape[0] + 1,[1,2]]=[bid,r]
29  end                             29
30                                  30     return mv

Implementation status

Random remarks

With less than five thousands lines of python code
SMOP does not pretend to compete with such polished products as matlab or octave. Yet, it is not a toy. There is an attempt to follow the original matlab semantics as close as possible. Matlab language definition (never published afaik) is full of dark corners, and SMOP tries to follow matlab as precisely as possible.
There is a price, too.
The generated sources are matlabic, rather than pythonic, which means that library maintainers must be fluent in both languages, and the old development environment must be kept around.
Should the generated program be pythonic or matlabic?

For example should array indexing start with zero (pythonic) or with one (matlabic)?

I beleive now that some matlabic accent is unavoidable in the generated python sources. Imagine matlab program is using regular expressions, matlab style. We are not going to translate them to python style, and that code will remain forever as a reminder of the program's matlab origin.

Another example. Matlab code opens a file; fopen returns -1 on error. Pythonic code would raise exception, but we are not going to do that. Instead, we will live with the accent, and smop takes this to the extreme --- the matlab program remains mostly unchanged.

It turns out that generating matlabic` allows for moving much of the project complexity out of the compiler (which is already complicated enough) and into the runtime library, where there is almost no interaction between the library parts.

Which one is faster --- python or octave? I don't know.
Doing reliable performance measurements is notoriously hard, and is of low priority for me now. Instead, I wrote a simple driver go.m and go.py and rewrote rand so that python and octave versions run the same code. Then I ran the above example on my laptop. The results are twice as fast for the python version. What does it mean? Probably nothing. YMMV.
ai = zeros(10,10);
af = ai;

ai(1,1)=2;
ai(2,2)=3;
ai(3,3)=4;
ai(4,4)=5;
ai(5,5)=1;

af(9,9)=1;
af(8,8)=2;
af(7,7)=3;
af(6,6)=4;
af(10,10)=5;

tic;
mv = solver(ai,af,0);
toc

Running the test suite:

$ cd smop
$ make check
$ make test

Command-line options

[email protected] ~/smop-github/smop $ python main.py -h
SMOP compiler version 0.25.1
Usage: smop [options] file-list
    Options:
    -V --version
    -X --exclude=FILES      Ignore files listed in comma-separated list FILES
    -d --dot=REGEX          For functions whose names match REGEX, save debugging
                            information in "dot" format (see www.graphviz.org).
                            You need an installation of graphviz to use --dot
                            option.  Use "dot" utility to create a pdf file.
                            For example:
                                $ python main.py fastsolver.m -d "solver|cbest"
                                $ dot -Tpdf -o resolve_solver.pdf resolve_solver.dot
    -h --help
    -o --output=FILENAME    By default create file named a.py
    -o- --output=-          Use standard output
    -s --strict             Stop on the first error
    -v --verbose

Owner
Tom Xu
Software Engineer, AI/ML SaaS Advocate, Scientific Simulations and Optimizations.
Tom Xu
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images

HistoSeg : Quick attention with multi-loss function for multi-structure segmentation in digital histology images Histological Image Segmentation This

Saad Wazir 11 Dec 16, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
NR-GAN: Noise Robust Generative Adversarial Networks

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

Takuhiro Kaneko 59 Dec 11, 2022
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
OMAMO: orthology-based model organism selection

OMAMO: orthology-based model organism selection OMAMO is a tool that suggests the best model organism to study a biological process based on orthologo

Dessimoz Lab 5 Apr 22, 2022
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022