This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Overview

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots

Blind2Unblind

Citing Blind2Unblind

@inproceedings{wang2022blind2unblind,
  title={Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots}, 
  author={Zejin Wang and Jiazheng Liu and Guoqing Li and Hua Han},
  booktitle={International Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Installation

The model is built in Python3.8.5, PyTorch 1.7.1 in Ubuntu 18.04 environment.

Data Preparation

1. Prepare Training Dataset

  • For processing ImageNet Validation, please run the command

    python ./dataset_tool.py
  • For processing SIDD Medium Dataset in raw-RGB, please run the command

    python ./dataset_tool_raw.py

2. Prepare Validation Dataset

​ Please put your dataset under the path: ./Blind2Unblind/data/validation.

Pretrained Models

The pre-trained models are placed in the folder: ./Blind2Unblind/pretrained_models

# # For synthetic denoising
# gauss25
./pretrained_models/g25_112f20_beta19.7.pth
# gauss5_50
./pretrained_models/g5-50_112rf20_beta19.4.pth
# poisson30
./pretrained_models/p30_112f20_beta19.1.pth
# poisson5_50
./pretrained_models/p5-50_112rf20_beta20.pth

# # For raw-RGB denoising
./pretrained_models/rawRGB_112rf20_beta19.4.pth

# # For fluorescence microscopy denooising
# Confocal_FISH
./pretrained_models/Confocal_FISH_112rf20_beta20.pth
# Confocal_MICE
./pretrained_models/Confocal_MICE_112rf20_beta19.7.pth
# TwoPhoton_MICE
./pretrained_models/TwoPhoton_MICE_112rf20_beta20.pth

Train

  • Train on synthetic dataset
python train_b2u.py --noisetype gauss25 --data_dir ./data/train/Imagenet_val --val_dirs ./data/validation --save_model_path ../experiments/results --log_name b2u_unet_gauss25_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0
  • Train on SIDD raw-RGB Medium dataset
python train_sidd_b2u.py --data_dir ./data/train/SIDD_Medium_Raw_noisy_sub512 --val_dirs ./data/validation --save_model_path ../experiments/results --log_name b2u_unet_raw_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0
  • Train on FMDD dataset
python train_fmdd_b2u.py --data_dir ./dataset/fmdd_sub/train --val_dirs ./dataset/fmdd_sub/validation --subfold Confocal_FISH --save_model_path ../experiments/fmdd --log_name Confocal_FISH_b2u_unet_fmdd_112rf20 --Lambda1 1.0 --Lambda2 2.0 --increase_ratio 20.0

Test

  • Test on Kodak, BSD300 and Set14

    • For noisetype: gauss25

      python test_b2u.py --noisetype gauss25 --checkpoint ./pretrained_models/g25_112f20_beta19.7.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_g25_112rf20 --beta 19.7
    • For noisetype: gauss5_50

      python test_b2u.py --noisetype gauss5_50 --checkpoint ./pretrained_models/g5-50_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_g5_50_112rf20 --beta 19.4
    • For noisetype: poisson30

      python test_b2u.py --noisetype poisson30 --checkpoint ./pretrained_models/p30_112f20_beta19.1.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_p30_112rf20 --beta 19.1
    • For noisetype: poisson5_50

      python test_b2u.py --noisetype poisson5_50 --checkpoint ./pretrained_models/p5-50_112rf20_beta20.pth --test_dirs ./data/validation --save_test_path ./test --log_name b2u_unet_p5_50_112rf20 --beta 20.0
  • Test on SIDD Validation in raw-RGB space

python test_sidd_b2u.py --checkpoint ./pretrained_models/rawRGB_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name validation_b2u_unet_raw_112rf20 --beta 19.4
  • Test on SIDD Benchmark in raw-RGB space
python benchmark_sidd_b2u.py --checkpoint ./pretrained_models/rawRGB_112rf20_beta19.4.pth --test_dirs ./data/validation --save_test_path ./test --log_name benchmark_b2u_unet_raw_112rf20 --beta 19.4
  • Test on FMDD Validation

    • For Confocal_FISH
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/Confocal_FISH_112rf20_beta20.pth --test_dirs ./dataset/fmdd_sub/validation --subfold Confocal_FISH --save_test_path ./test --log_name Confocal_FISH_b2u_unet_fmdd_112rf20 --beta 20.0
    • For Confocal_MICE
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/Confocal_MICE_112rf20_beta19.7.pth --test_dirs ./dataset/fmdd_sub/validation --subfold Confocal_MICE --save_test_path ./test --log_name Confocal_MICE_b2u_unet_fmdd_112rf20 --beta 19.7
    • For TwoPhoton_MICE
    python test_fmdd_b2u.py --checkpoint ./pretrained_models/TwoPhoton_MICE_112rf20_beta20.pth --test_dirs ./dataset/fmdd_sub/validation --subfold TwoPhoton_MICE --save_test_path ./test --log_name TwoPhoton_MICE_b2u_unet_fmdd_112rf20 --beta 20.0
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Pixel-wise segmentation on VOC2012 dataset using pytorch.

PiWiSe Pixel-wise segmentation on the VOC2012 dataset using pytorch. FCN SegNet PSPNet UNet RefineNet For a more complete implementation of segmentati

Bodo Kaiser 378 Dec 30, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

Shihua Huang 23 Jul 22, 2022
Code for BMVC2021 paper "Boundary Guided Context Aggregation for Semantic Segmentation"

Boundary-Guided-Context-Aggregation Boundary Guided Context Aggregation for Semantic Segmentation Haoxiang Ma, Hongyu Yang, Di Huang In BMVC'2021 Pape

Haoxiang Ma 31 Jan 08, 2023
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
It is an open dataset for object detection in remote sensing images.

RSOD-Dataset It is an open dataset for object detection in remote sensing images. The dataset includes aircraft, oiltank, playground and overpass. The

136 Dec 08, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation

AEI: Actors-Environment Interaction with Adaptive Attention for Temporal Action Proposals Generation A pytorch-version implementation codes of paper:

11 Dec 13, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
A PyTorch implementation of the architecture of Mask RCNN

EDIT (AS OF 4th NOVEMBER 2019): This implementation has multiple errors and as of the date 4th, November 2019 is insufficient to be utilized as a reso

Sai Himal Allu 975 Dec 30, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
Myia prototyping

Myia Myia is a new differentiable programming language. It aims to support large scale high performance computations (e.g. linear algebra) and their g

Mila 456 Nov 07, 2022
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
An automated algorithm to extract the linear blend skinning (LBS) from a set of example poses

Dem Bones This repository contains an implementation of Smooth Skinning Decomposition with Rigid Bones, an automated algorithm to extract the Linear B

Electronic Arts 684 Dec 26, 2022