DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Overview


English | 简体中文

Introduction

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Reference PatchCore anomaly detection model

plot

Major features
  • Using nominal (non-defective) example images only

  • Faiss(CPU/GPU)

  • TensorRT Deployment

Installation

$ git clone https://github.com/tbcvContributor/DeepHawkeye.git
$ pip install opencv-python
$ pip install scipy

# pytorch
$ pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html


#install faiss
# CPU-only version(currently available on Linux, OSX, and Windows)
$ conda install -c pytorch faiss-cpu
# GPU(+CPU) version (containing both CPU and GPU indices, is available on Linux systems)
$ conda install -c pytorch faiss-gpu
# or for a specific CUDA version
$ conda install -c pytorch faiss-gpu cudatoolkit=10.2 # for CUDA 10.2 

Checkpoints and Demo data

Wide ResNet-50-2 and demo data

[Google]

[Baidu],code:a14e

${ROOT}
   └——————weights
           └——————wide_r50_2.pth
   └——————demo_data
           └——————grid
                    └——————normal_data
                    └——————test_data
           └——————....

Demo

bulid normal lib
python demo_train.py -d ./demo_data/grid/normal_data -c grid
pytorch infer
python demo_test.py -d ./demo_data/grid/test_data -c grid
tensorrt infer
python demo_trt.py -d ./demo_data/grid/test_data -c grid -t ./weights/w_res_50.trt

Tutorials

  • Need normal example images to cover all scenarios as much as possible

  • Faiss Documentation Default IVFXX, PQ16

train args
def get_train_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d','--total_img_paths',type=str, default=None)
    parser.add_argument('-c','--category',type=str, default=None)
    parser.add_argument('--batch_size', default=64)
    parser.add_argument('--embedding_layers',choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--max_cluster_image_num', default=1000,help='depend on CPU memory, more than total images number')
    parser.add_argument('--index_build_device', default=-1,help='CPU:-1 ,GPU number eg: 0, 1, 2 (only on Linux)')

tips:

--input_size: trade off between speed and accuracy of the result --max_cluster_image_num:If RAM allows, greater than or equal to the total number of samples

test args
def get_test_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--test_path', type=str, default=None)
    parser.add_argument('-c', '--category', type=str, default=None)
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--test_batch_size', default=64)
    parser.add_argument('--embedding_layers', choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--test_GPU', default=-1, help='CPU:-1,'
                                                       'GPU: num eg: 0, 1, 2'
                                                       'multi_GPUs:[0,1,...]')
    parser.add_argument('--save_heat_map_image', default=True)
    parser.add_argument('--heatmap_save_path',
                        default=fr'./results', help='heatmap save path')
    parser.add_argument('--threshold', default=2)
    parser.add_argument('--nprobe', default=10)
    parser.add_argument('--n_neighbors', type=int, default=5)
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")

tips:

--threshold: depend on scores of anomaly data

result format:{filename}_{score}.jpg

License

This project is released under the Apache 2.0 license.

Code Reference

https://github.com/hcw-00/PatchCore_anomaly_detection embedding concat function : https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master

Owner
CV Newbie
CV Newbie
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
[NeurIPS 2020] Semi-Supervision (Unlabeled Data) & Self-Supervision Improve Class-Imbalanced / Long-Tailed Learning

Rethinking the Value of Labels for Improving Class-Imbalanced Learning This repository contains the implementation code for paper: Rethinking the Valu

Yuzhe Yang 656 Dec 28, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
Just-Now - This Is Just Now Login Friendlist Cloner Tools

JUST NOW LOGIN FRIENDLIST CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 21 Mar 09, 2022
Official repository for the paper "Going Beyond Linear Transformers with Recurrent Fast Weight Programmers"

Recurrent Fast Weight Programmers This is the official repository containing the code we used to produce the experimental results reported in the pape

IDSIA 36 Nov 15, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
MAT: Mask-Aware Transformer for Large Hole Image Inpainting

MAT: Mask-Aware Transformer for Large Hole Image Inpainting (CVPR2022, Oral) Wenbo Li, Zhe Lin, Kun Zhou, Lu Qi, Yi Wang, Jiaya Jia [Paper] News This

254 Dec 29, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
The Agriculture Domain of ERPNext comes with features to record crops and land

Agriculture The Agriculture Domain of ERPNext comes with features to record crops and land, track plant, soil, water, weather analytics, and even trac

Frappe 21 Jan 02, 2023
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
This repository contains the implementation of the paper: "Towards Frequency-Based Explanation for Robust CNN"

RobustFreqCNN About This repository contains the implementation of the paper "Towards Frequency-Based Explanation for Robust CNN" arxiv. It primarly d

Sarosij Bose 2 Jan 23, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments

Fusion-DHL: WiFi, IMU, and Floorplan Fusion for Dense History of Locations in Indoor Environments Paper: arXiv (ICRA 2021) Video : https://youtu.be/CC

Sachini Herath 68 Jan 03, 2023
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023