Proximal Backpropagation - a neural network training algorithm that takes implicit instead of explicit gradient steps

Related tags

Deep Learningproxprop
Overview

Proximal Backpropagation

Proximal Backpropagation (ProxProp) is a neural network training algorithm that takes implicit instead of explicit gradient steps to update the network parameters. We have analyzed this algorithm in our ICLR 2018 paper:

Proximal Backpropagation (Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers; ICLR 2018) [https://arxiv.org/abs/1706.04638]

tl;dr

  • We provide a PyTorch implementation of ProxProp for Python 3 and PyTorch 1.0.1.
  • The results of our paper can be reproduced by executing the script paper_experiments.sh.
  • ProxProp is implemented as a torch.nn.Module (a 'layer') and can be combined with any other layer and first-order optimizer. While a ProxPropConv2d and a ProxPropLinear layer already exist, you can generate a ProxProp layer for your favorite linear layer with one line of code.

Installation

  1. Make sure you have a running Python 3 (tested with Python 3.7) ecosytem. We recommend that you use a conda install, as this is also the recommended option to get the latest PyTorch running. For this README and for the scripts, we assume that you have conda running with Python 3.7.
  2. Clone this repository and switch to the directory.
  3. Install the dependencies via conda install --file conda_requirements.txt and pip install -r pip_requirements.txt.
  4. Install PyTorch with magma support. We have tested our code with PyTorch 1.0.1 and CUDA 10.0. You can install this setup via
    conda install -c pytorch magma-cuda100
    conda install pytorch torchvision cudatoolkit=10.0 -c pytorch
    
  5. (optional, but necessary to reproduce paper experiments) Download the CIFAR-10 dataset by executing get_data.sh

Training neural networks with ProxProp

ProxProp is implemented as a custom linear layer (torch.nn.Module) with its own backward pass to take implicit gradient steps on the network parameters. With this design choice it can be combined with any other layer, for which one takes explicit gradient steps. Furthermore, the resulting update direction can be used with any first-order optimizer that expects a suitable update direction in parameter space. In our paper we prove that ProxProp generates a descent direction and show experiments with Nesterov SGD and Adam.

You can use our pre-defined layers ProxPropConv2d and ProxPropLinear, corresponding to nn.Conv2d and nn.Linear, by importing

from ProxProp import ProxPropConv2d, ProxPropLinear

Besides the usual layer parameters, as detailed in the PyTorch docs, you can provide:

  • tau_prox: step size for a proximal step; default is tau_prox=1
  • optimization_mode: can be one of 'prox_exact', 'prox_cg{N}', 'gradient' for an exact proximal step, an approximate proximal step with N conjugate gradient steps and an explicit gradient step, respectively; default is optimization_mode='prox_cg1'. The 'gradient' mode is for a fair comparison with SGD, as it incurs the same overhead as the other methods in exploiting a generic implementation with the provided PyTorch API.

If you want to use ProxProp to optimize your favorite linear layer, you can generate the respective module with one line of code. As an example for the the Conv3d layer:

from ProxProp import proxprop_module_generator
ProxPropConv3d = proxprop_module_generator(torch.nn.Conv3d)

This gives you a default implementation for the approximate conjugate gradient solver, which treats all parameters as a stacked vector. If you want to use the exact solver or want to use the conjugate gradient solver more efficiently, you have to provide the respective reshaping methods to proxprop_module_generator, as this requires specific knowledge of the layer's structure and cannot be implemented generically. As a template, take a look at the ProxProp.py file, where we have done this for the ProxPropLinear layer.

By reusing the forward/backward implementations of existing PyTorch modules, ProxProp becomes readily accessible. However, we pay an overhead associated with generically constructing the backward pass using the PyTorch API. We have intentionally sided with genericity over speed.

Reproduce paper experiments

To reproduce the paper experiments execute the script paper_experiments.sh. This will run our paper's experiments, store the results in the directory paper_experiments/ and subsequently compile the results into the file paper_plots.pdf. We use an NVIDIA Titan X GPU; executing the script takes roughly 3 hours.

Acknowledgement

We want to thank Soumith Chintala for helping us track down a mysterious bug and the whole PyTorch dev team for their continued development effort and great support to the community.

Publication

If you use ProxProp, please acknowledge our paper by citing

@article{Frerix-et-al-18,
    title = {Proximal Backpropagation},
    author={Thomas Frerix, Thomas Möllenhoff, Michael Moeller, Daniel Cremers},
    journal={International Conference on Learning Representations},
    year={2018},
    url = {https://arxiv.org/abs/1706.04638}
}
Owner
Thomas Frerix
Thomas Frerix
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Python calculations for the position of the sun and moon.

Astral This is 'astral' a Python module which calculates Times for various positions of the sun: dawn, sunrise, solar noon, sunset, dusk, solar elevat

Simon Kennedy 169 Dec 20, 2022
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

83 Nov 29, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
"NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search".

NAS-Bench-301 This repository containts code for the paper: "NAS-Bench-301 and the Case for Surrogate Benchmarks for Neural Architecture Search". The

AutoML-Freiburg-Hannover 57 Nov 30, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
codes for "Scheduled Sampling Based on Decoding Steps for Neural Machine Translation" (long paper of EMNLP-2022)

Scheduled Sampling Based on Decoding Steps for Neural Machine Translation (EMNLP-2021 main conference) Contents Overview Background Quick to Use Furth

Adaxry 13 Jul 25, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022