Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Overview

Struct-MDC

video

journal arxiv

(click the above buttons for redirection!)


Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural Regularities from Visual SLAM", which is accepted in IEEE RA-L'22 (IROS'22 are still being under-reviewed.)

  • Depth completion from Visual(-inertial) SLAM using point & line features.

README & code & Dataset are still being edited.

  • Code (including source code, utility code for visualization) & Dataset will be finalized & released soon! (goal: I'm still organizing the code structure, until publish date)
  • version info
    • (04/20) docker image has been uploaded.
    • (04/21) Dataset has been uploaded.
    • (04/21) Visusal-SLAM module (modified UV-SLAM) has been uploaded.



Results

  • 3D Depth estimation results
    • VOID (left three columns) and NYUv2 (right three columns)
    • detected features (top row), estimation from baseline (middle row) and ours (bottom row)

  • 2D Depth estimation results
Ground truth Baseline Struct-MDC (Ours)



Installation

1. Prerequisites (we've validated our code in the following environment!)

  • Common
  • Visual-SLAM module
    • OpenCV 3.2.0 (under 3.4.1)
    • Ceres Solver-1.14.0
    • Eigen-3.3.9
    • CDT library
      git clone https://github.com/artem-ogre/CDT.git
      cd CDT
      mkdir build && cd build
      cmake -DCDT_USE_AS_COMPILED_LIBRARY=ON -DCDT_USE_BOOST=ON ..
      cmake --build . && cmake --install .
      sudo make install
      
  • Depth completion module
    • Python 3.7.7
    • PyTorch 1.5.0 (you can easily reproduce equivalent environment using our docker image)

2. Build

  • Visual-SLAM module

    • As visual-SLAM, we modified the UV-SLAM, which is implemented in ROS environment.
    • make sure that your catkin workspace has following cmake args: -DCMAKE_BUILD_TYPE=Release
    cd ~/$(PATH_TO_YOUR_ROS_WORKSPACE)/src
    git clone --recursive https://github.com/url-kaist/Struct-MDC
    cd ..
    catkin build
    source ~/$(PATH_TO_YOUR_ROS_WORKSPACE)/devel/setup.bash
    
  • Depth completion module

    • Our depth compeltion module is based on the popular Deep-Learning framework, PyTorch.
    • For your convenience, we share our environment as Docker image. We assume that you have already installed the Docker. For Docker installation, please refer here
    # pull our docker image into your local machine
    docker pull zinuok/nvidia-torch:latest
    
    # run the image mounting our source
    docker run -it --gpus "device=0" -v $(PATH_TO_YOUR_LOCAL_FOLER):/workspace zinuok/nvidia-torch:latest bash
    

3. Trouble shooting

  • any issues found will be updated in this section.
  • if you've found any other issues, please post it on Issues tab. We'll do our best to resolve your issues.
Owner
Urban Robotics Lab. @ KAIST
Urban Robotics Lab. @ KAIST
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation

BEAMetrics: Benchmark to Evaluate Automatic Metrics in Natural Language Generation Installing The Dependencies $ conda create --name beametrics python

7 Jul 04, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
Filtering variational quantum algorithms for combinatorial optimization

Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently.

1 Feb 09, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis.

ID-Unet: Iterative-view-synthesis(CVPR2021 Oral) Tensorflow implementation of ID-Unet: Iterative Soft and Hard Deformation for View Synthesis. Overvie

17 Aug 23, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
[ACM MM 2021] TSA-Net: Tube Self-Attention Network for Action Quality Assessment

Tube Self-Attention Network (TSA-Net) This repository contains the PyTorch implementation for paper TSA-Net: Tube Self-Attention Network for Action Qu

ShunliWang 18 Dec 23, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.

Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape

Antonin Schrab 5 Dec 15, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022