Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Overview

Open-L2O

This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of problems and settings. We release our software implementation and data as the Open-L2O package, for reproducible research and fair benchmarking in the L2O field. [Paper]

License: MIT

Overview

What is learning to optimize (L2O)?

L2O (Learning to optimize) aims to replace manually designed analytic optimization algorithms (SGD, RMSProp, Adam, etc.) with learned update rules.

How does L2O work?

L2O serves as functions that can be fit from data. L2O gains experience from training optimization tasks in a principled and automatic way.

What can L2O do for you?

L2O is particularly suitable for solving a certain type of optimization over a specific distribution of data repeatedly. In comparison to classic methods, L2O is shown to find higher-quality solutions and/or with much faster convergence speed for many problems.

Open questions for research?

  • There are significant theoretical and practicality gaps between manually designed optimizers and existing L2O models.

Main Results

Learning to optimize sparse recovery

Learning to optimize Lasso functions

Learning to optimize non-convex Rastrigin functions

Learning to optimize neural networks

Supported Model-base Learnable Optimizers

All codes are available at here.

  1. LISTA (feed-forward form) from Learning fast approximations of sparse coding [Paper]
  2. LISTA-CP from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  3. LISTA-CPSS from Theoretical Linear Convergence of Unfolded ISTA and its Practical Weights and Thresholds [Paper]
  4. LFISTA from Understanding Trainable Sparse Coding via Matrix Factorization [Paper]
  5. LAMP from AMP-Inspired Deep Networks for Sparse Linear Inverse Problems [Paper]
  6. ALISTA from ALISTA: Analytic Weights Are As Good As Learned Weights in LISTA [Paper]
  7. GLISTA from Sparse Coding with Gated Learned ISTA [Paper]

Supported Model-free Learnable Optimizers

  1. L2O-DM from Learning to learn by gradient descent by gradient descent [Paper] [Code]
  2. L2O-RNNProp Learning Gradient Descent: Better Generalization and Longer Horizons from [Paper] [Code]
  3. L2O-Scale from Learned Optimizers that Scale and Generalize [Paper] [Code]
  4. L2O-enhanced from Training Stronger Baselines for Learning to Optimize [Paper] [Code]
  5. L2O-Swarm from Learning to Optimize in Swarms [Paper] [Code]
  6. L2O-Jacobian from HALO: Hardware-Aware Learning to Optimize [Paper] [Code]
  7. L2O-Minmax from Learning A Minimax Optimizer: A Pilot Study [Paper] [Code]

Supported Optimizees

Convex Functions:

  • Quadratic
  • Lasso

Non-convex Functions:

  • Rastrigin

Minmax Functions:

  • Saddle
  • Rotated Saddle
  • Seesaw
  • Matrix Game

Neural Networks:

  • MLPs on MNIST
  • ConvNets on MNIST and CIFAR-10
  • LeNet
  • NAS searched archtectures

Other Resources

  • This is a Pytorch implementation of L2O-DM. [Code]
  • This is the original L2O-Swarm repository. [Code]
  • This is the original L2O-Jacobian repository. [Code]

Future Works

  • TF2.0 Implementated toolbox v2 with a unified framework and lib dependency.

Cite

@misc{chen2021learning,
      title={Learning to Optimize: A Primer and A Benchmark}, 
      author={Tianlong Chen and Xiaohan Chen and Wuyang Chen and Howard Heaton and Jialin Liu and Zhangyang Wang and Wotao Yin},
      year={2021},
      eprint={2103.12828},
      archivePrefix={arXiv},
      primaryClass={math.OC}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Rule-based Customer Segmentation

Rule-based Customer Segmentation Business Problem A game company wants to create level-based new customer definitions (personas) by using some feature

Cem Çaluk 2 Jan 03, 2022
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021)

Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation (ICCV2021) This is the implementation of PSD (ICCV 2021),

12 Dec 12, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
[ICLR'19] Trellis Networks for Sequence Modeling

TrellisNet for Sequence Modeling This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico

CMU Locus Lab 460 Oct 13, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Source code for The Power of Many: A Physarum Swarm Steiner Tree Algorithm

Physarum-Swarm-Steiner-Algo Source code for The Power of Many: A Physarum Steiner Tree Algorithm Code implements ideas from the following papers: Sher

Sheryl Hsu 2 Mar 28, 2022
Real-time multi-object tracker using YOLO v5 and deep sort

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algor

Mike 3.6k Jan 05, 2023
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
最新版本yolov5+deepsort目标检测和追踪,支持5.0版本可训练自己数据集

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

422 Dec 30, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Real-time analysis of intracranial neurophysiology recordings.

py_neuromodulation Click this button to run the "Tutorial ML with py_neuro" notebooks: The py_neuromodulation toolbox allows for real time capable pro

Interventional Cognitive Neuromodulation - Neumann Lab Berlin 15 Nov 03, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
PyTorch Implementation of Temporal Output Discrepancy for Active Learning, ICCV 2021

Temporal Output Discrepancy for Active Learning PyTorch implementation of Semi-Supervised Active Learning with Temporal Output Discrepancy, ICCV 2021.

Siyu Huang 33 Dec 06, 2022