QuALITY: Question Answering with Long Input Texts, Yes!

Related tags

Deep Learningquality
Overview

QuALITY: Question Answering with Long Input Texts, Yes!

Authors: Richard Yuanzhe Pang,* Alicia Parrish,* Nitish Joshi,* Nikita Nangia, Jason Phang, Angelica Chen, Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman (* = equal contribution)

Data link

Download QuALITY v0.9 (zip).

Paper preprint

You can read the paper here.

Data README

Here are the explanations to the fields in the jsonl file. Each json line corresponds to the set of validated questions, corresponding to one article, written by one writer.

  • article_id: String. A five-digit number uniquely identifying the article. In each split, there are exactly two lines containing the same article_id, because two writers wrote questions for the same article.
  • set_unique_id: String. The unique ID corresponding to the set of questions, which corresponds to the line of json. Each set of questions is written by the same writer.
  • batch_num: String. The batch number. Our data collection is split in two groups, and there are three batches in each group. [i][j] means the j-th batch in the i-th group. For example, 23 corresponds to the third batch in the second group.
  • writer_id: String. The anonymized ID of the writer who wrote this set of questions.
  • source: String. The source of the article.
  • title: String. The title of the article.
  • author: String. The author of the article.
  • topic: String. The topic of the article.
  • url: String. The URL of the original unprocessed source article.
  • license: String. The license information for the article.
  • article: String. The HTML of the article. A script that converts HTML to plain texts is provided.
  • questions: A list of dictionaries explained below. Each line of json has a different number of questions because some questions were removed following validation.

As discussed, the value of questions is a list of dictionaries. Each dictionary has the following fields.

  • question: The question.
  • options: A list of four answer options.
  • gold_label: The correct answer, defined by a majority vote of 3 or 5 annotators + the original writer's label. The number corresponds to the option number (1-indexed) in options.
  • writer_label: The label the writer provided. The number corresponds to the option number (1-indexed) in options.
  • validation: A list of dictionaries containing the untimed validation results. Each dictionary contains the following fields.
    • untimed_annotator_id: The anonymized annotator IDs corresponding to the untimed validation results shown in untimed_answer.
    • untimed_answer: The responses in the untimed validation. Each question in the training set is annotated by three workers in most cases, and each question in the dev/test sets is annotated by five cases in most cases (see paper for exceptions).
    • untimed_eval1_answerability: The responses (represented numerically) to the first eval question in untimed validation. We asked the raters: “Is the question answerable and unambiguous?” The values correspond to the following choices:
      • 1: Yes, there is a single answer choice that is the most correct.
      • 2: No, two or more answer choices are equally correct.
      • 3: No, it is unclear what the question is asking, or the question or answer choices are unrelated to the passage.
    • untimed_eval2_context: The responses (represented numerically) to the second eval question in untimed validation. We asked the raters: “How much of the passage/text is needed as context to answer this question correctly?” The values correspond to the following choices:
      • 1: Only a sentence or two of context.
      • 2: At least a long paragraph or two of context.
      • 3: At least a third of the passage for context.
      • 4: Most or all of the passage for context.
    • untimed_eval3_distractor: The responses to the third eval question in untimed validation. We asked the raters: “Which of the options that you did not select was the best "distractor" item (i.e., an answer choice that you might be tempted to select if you hadn't read the text very closely)?” The numbers correspond to the option numbers (1-indexed).
  • speed_validation: A list of dictionaries containing the speed validation results. Each dictionary contains the following fields.
    • speed_annotator_id: The anonymized annotator IDs corresponding to the speed annotation results shown in speed_answer.
    • speed_answer: The responses in the speed validation. Each question is annotated by five workers.
  • difficult: A binary value. 1 means that less than 50% of the speed annotations answer the question correctly, so we include this question in the hard subset. Otherwise, the value is 0. In our evaluations, we report one accuracy figure for the entire dataset, and a second for the difficult=1 subset.

Validation criteria for the questions

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label (defined as the majority vote of validators' annotations together with the writer's provided label).
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.

What are the hard questions?

  • More than 50% of annotators answer the question correctly in the untimed setting. That is, more than 50% of the untimed_answer annotations agree with gold_label.
  • More than 50% of annotators think that the question is unambiguous and answerable. That is, more than 50% of the untimed_eval1_answerability annotations have 1's.
  • More than 50% of annotators answer the question incorrectly in the speed validaiton setting. That is, more than 50% of the speed_answer annotations are incorrect.

Test set

The annotations for questions in the test set will not be released. We are currently working on a leaderboard. Stay tuned for an update by early January!

Code

The code for our baseline models will be released soon. Stay tuned for an update by early January!

Citation

@article{pang2021quality,
  title={{QuALITY}: Question Answering with Long Input Texts, Yes!},
  author={Pang, Richard Yuanzhe and Parrish, Alicia and Joshi, Nitish and Nangia, Nikita and Phang, Jason and Chen, Angelica and Padmakumar, Vishakh and Ma, Johnny and Thompson, Jana and He, He and Bowman, Samuel R.},
  journal={arXiv preprint arXiv:2112.08608},
  year={2021}
}

Contact

{yzpang, alicia.v.parrish}@nyu.edu

Owner
ML² AT CILVR
The Machine Learning for Language Group at NYU CILVR
ML² AT CILVR
Task-related Saliency Network For Few-shot learning

Task-related Saliency Network For Few-shot learning This is an official implementation in Tensorflow of TRSN. Abstract An essential cue of human wisdo

1 Nov 18, 2021
PyTorch experiments with the Zalando fashion-mnist dataset

zalando-pytorch PyTorch experiments with the Zalando fashion-mnist dataset Project Organization ├── LICENSE ├── Makefile - Makefile with co

Federico Baldassarre 31 Sep 25, 2021
Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
《Deep Single Portrait Image Relighting》(ICCV 2019)

Ratio Image Based Rendering for Deep Single-Image Portrait Relighting [Project Page] This is part of the Deep Portrait Relighting project. If you find

62 Dec 21, 2022
Grounding Representation Similarity with Statistical Testing

Grounding Representation Similarity with Statistical Testing This repo contains code to replicate the results in our paper, which evaluates representa

26 Dec 02, 2022
Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces Official code release for NGLOD. For technical details, please refer t

659 Dec 27, 2022
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022
Implementation of Neural Style Transfer in Pytorch

PytorchNeuralStyleTransfer Code to run Neural Style Transfer from our paper Image Style Transfer Using Convolutional Neural Networks. Also includes co

Leon Gatys 396 Dec 01, 2022
Auto-updating data to assist in investment to NEPSE

Symbol Ratios Summary Sector LTP Undervalued Bonus % MEGA Strong Commercial Banks 368 5 10 JBBL Strong Development Banks 568 5 10 SIFC Strong Finance

Amit Chaudhary 16 Nov 01, 2022
CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable.

CausalNLP CausalNLP is a practical toolkit for causal inference with text as treatment, outcome, or "controlled-for" variable. Install pip install -U

Arun S. Maiya 95 Jan 03, 2023
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Nobuo Tsukamoto 53 Dec 22, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022