Crosslingual Segmental Language Model

Related tags

Deep LearningXLSLM
Overview

Crosslingual Segmental Language Model

This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely low-resource languages (2021, C.M. Downey, Shannon Drizin, Levon Haroutunian, and Shivin Thukral). The code here is a modified version of the repository from the original MSLM paper. The mslm package can be used to train and use Segmental Language Models.

In this repository, we additionally make available our preparation of the AmericasNLP 2021 multilingual dataset (see Data/AmericasNLP) and the target K'iche' data (Data/GlobalClassroom).

Paper Results

The results from the accompanying paper can be found in the Output directory. *.csv files include statistics from the training run, *.out contain the model output for the entire corpus, *.score contain the segmentation scores of the model output.

The results from the October 2021 pre-print (which we will refer to as Experiment Set A) are reproducible on commit 2b89575. We will consider this the official commit of the October 2021 pre-print.

Usage

The top-level scripts for training and experimentation can be found in RunScripts. Almost all functionality is run through the __main__.py script in the mslm package, which can either train or evaluate/use a model. The PyTorch modules for building SLMs can be found in mslm.segmental_lm, modules for the span-masking Transformer are in mslm.segmental_transformer, and modules for sequence lattice-based computations are in mslm.lattice. The main script takes in a configuration object to set most parameters for model training and use (see mslm.mslm_config). For information on the arguments to the main script:

python -m mslm --help

Environment setup

pip install -r requirements.txt

This code requires Python >= 3.6

Training

./RunScripts/run_mslm.sh 
    
     
     

     
    
   

or

python -m mslm --input_file 
   
     \
    --model_path 
    
      \
    --mode train \
    --config_file 
     
       \
    --dev_file 
      
        \
    [--preexisting]

      
     
    
   

Evaluation

./RunScripts/eval_mslm.sh 
    
     
      
      

      
     
    
   

Where is a text file containing all of the words from the training set

Owner
C.M. Downey
PhD Student in Computational Linguistics / NLP
C.M. Downey
MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

MiniHack the Planet: A Sandbox for Open-Ended Reinforcement Learning Research

Facebook Research 338 Dec 29, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Material del curso IIC2233 Programación Avanzada 📚

Contenidos Los contenidos se organizan según la semana del semestre en que nos encontremos, y según la semana que se destina para su estudio. Los cont

IIC2233 @ UC 72 Dec 23, 2022
Utilities and information for the signals.numer.ai tournament

dsignals Utilities and information for the signals.numer.ai tournament using eodhistoricaldata.com eodhistoricaldata.com provides excellent historical

Degerhan Usluel 23 Dec 18, 2022
Human Dynamics from Monocular Video with Dynamic Camera Movements

Human Dynamics from Monocular Video with Dynamic Camera Movements Ri Yu, Hwangpil Park and Jehee Lee Seoul National University ACM Transactions on Gra

215 Jan 01, 2023
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices,

Optimal Camera Position for a Practical Application of Gaze Estimation on Edge Devices, Linh Van Ma, Tin Trung Tran, Moongu Jeon, ICAIIC 2022 (The 4th

Linh 11 Oct 10, 2022
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! 🖊️ Natural language processing

Gradio 96 Dec 30, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
Clockwork Variational Autoencoder

Clockwork Variational Autoencoders (CW-VAE) Vaibhav Saxena, Jimmy Ba, Danijar Hafner If you find this code useful, please reference in your paper: @ar

Vaibhav Saxena 35 Nov 06, 2022
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Convolutional Neural Network to detect deforestation in the Amazon Rainforest

Convolutional Neural Network to detect deforestation in the Amazon Rainforest This project is part of my final work as an Aerospace Engineering studen

5 Feb 17, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022