PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

Overview

PyTorch-Style-Transfer

This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included by ModelDepot. We also provide Torch implementation and MXNet implementation.

Tabe of content

MSG-Net

Multi-style Generative Network for Real-time Transfer [arXiv] [project]
Hang Zhang, Kristin Dana
@article{zhang2017multistyle,
	title={Multi-style Generative Network for Real-time Transfer},
	author={Zhang, Hang and Dana, Kristin},
	journal={arXiv preprint arXiv:1703.06953},
	year={2017}
}

Stylize Images Using Pre-trained MSG-Net

  1. Download the pre-trained model
    git clone [email protected]:zhanghang1989/PyTorch-Style-Transfer.git
    cd PyTorch-Style-Transfer/experiments
    bash models/download_model.sh
  2. Camera Demo
    python camera_demo.py demo --model models/21styles.model
  3. Test the model
    python main.py eval --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg --model models/21styles.model --content-size 1024
  • If you don't have a GPU, simply set --cuda=0. For a different style, set --style-image path/to/style. If you would to stylize your own photo, change the --content-image path/to/your/photo. More options:

    • --content-image: path to content image you want to stylize.
    • --style-image: path to style image (typically covered during the training).
    • --model: path to the pre-trained model to be used for stylizing the image.
    • --output-image: path for saving the output image.
    • --content-size: the content image size to test on.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Train Your Own MSG-Net Model

  1. Download the COCO dataset
    bash dataset/download_dataset.sh
  2. Train the model
    python main.py train --epochs 4
  • If you would like to customize styles, set --style-folder path/to/your/styles. More options:
    • --style-folder: path to the folder style images.
    • --vgg-model-dir: path to folder where the vgg model will be downloaded.
    • --save-model-dir: path to folder where trained model will be saved.
    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Neural Style

Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg
  • --content-image: path to content image.
  • --style-image: path to style image.
  • --output-image: path for saving the output image.
  • --content-size: the content image size to test on.
  • --style-size: the style image size to test on.
  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Acknowledgement

The code benefits from outstanding prior work and their implementations including:

Comments
  • training new model

    training new model

    @zhanghang1989 I trained a model with three style images. Now, I see eight .model files. Can you please tell me which .model file to use OR how to integrate them to single model file.

    Thanks Akash

    opened by akashdexati 7
  • Unable to resume training

    Unable to resume training

    Hey,

    So I started training a model, but seeing how long it was going to take I wanted to double check I could successfully resume training.

    I ran: python3 main.py train --epochs 4 --style-folder images/xmas-styles/ --save-model-dir trained_models/ until it generated the first checkpoint, then I ran python3 main.py train --epochs 4 --style-folder images/xmas-styles/ --save-model-dir trained_models/ --resume trained_models/Epoch_0iters_8000_Sat_Dec__9_18\:10\:43_2017_1.0_5.0.model and waiting for the first feedback report, which was Sat Dec 9 18:17:09 2017 Epoch 1: [2000/123287] content: 254020.831359 style: 1666218.549250 total: 1920239.380609 so it appeared to not have resumed at all.

    Also slight side question... Say I train with --epochs 4 til I get final model... If I were to use the last checkpoint before final to resume, but set --epochs 5 or higher, would that work correctly and just keep going through to 5 epochs before generating another final, and have no issues etc?

    opened by pingu2k4 6
  • Temporal coherence?

    Temporal coherence?

    Have you tried some technique for temporal coherence? If not, would you mind if I ask which one would you recommend or would like to try.

    Keep up the good work.

    opened by rraallvv 3
  • vgg16.t7 unhashable type: 'numpy.ndarray'

    vgg16.t7 unhashable type: 'numpy.ndarray'

    It's been a while since the last vgg16 issue i found on this "Issues".

    So i download the vgg16.t7 from the paper quoted in this github. And i run this command "python main.py train --epochs 4 --style-folder images/ownstyles --save-model-dir own_models --cuda 1" i have put the vgg16.t7 into models folder, it's been detected correctly. However, the following problem happened.

    Traceback (most recent call last):
      File "main.py", line 295, in <module>
        main()
      File "main.py", line 41, in main
        train(args)
      File "main.py", line 135, in train
        utils.init_vgg16(args.vgg_model_dir)
      File "C:\Users\user\Prepwork\Cap Project\PyTorch-Multi-Style-Transfer\experiments\utils.py", line 100, in init_vgg16
        vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7'))
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 424, in load
        return reader.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj
        obj._obj = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 385, in read_obj
        k = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 386, in read_obj
        v = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj
        obj._obj = self.read_obj()
      File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 387, in read_obj
        obj[k] = v
    TypeError: unhashable type: 'numpy.ndarray'
    

    Is there anyway i can fix this? i found in other thread they said replace with another one, but i could not find another one other than from stanford.

    Thanks!

    opened by fuddyduddy 2
  • Fix colab notebook

    Fix colab notebook

    Hi. Made some changes to notebook:

    • fixed RuntimeError #21, #32, that was fixed in #31 and #37, but not for msgnet.ipynb;
    • removed unused import torch.nn.functional;
    • prettified according to pep8;
    • changed os.system('wget ...') to direct calling !wget ... without importing os module.

    Tested in colab (run all), the notebook works as expected without errors.

    opened by amrzv 1
  • Establish Docker directory

    Establish Docker directory

    What: Establishes a Docker directory with Dockerfile and run script

    Why: The original repo was written for an outdated version of PyTorch, which makes it hard to run on modern systems without conflicting with updated versions of the dependencies.

    Build the container with

    cd Docker
    docker build -t style-transfer .
    
    opened by ss32 1
  • Fix compatibility issues with torch==1.1.0

    Fix compatibility issues with torch==1.1.0

    RuntimeError: Error(s) in loading state_dict for Net:
    	Unexpected running stats buffer(s) "model1.1.running_mean" and "model1.1.running_var" for InstanceNorm2d with track_running_stats=False. If state_dict is a checkpoint saved before 0.4.0, this may be expected because InstanceNorm2d does not track running stats by default since 0.4.0. Please remove these keys from state_dict. If the running stats are actually needed, instead set track_running_stats=True in InstanceNorm2d to enable them. See the documentation of InstanceNorm2d for details.
    
    opened by jianchao-li 1
  • set default values

    set default values

    Hi,

    I try run the camera.py with the arguments discribed in the docs , but fail because inside the code dont have values for args.demo_size and img.copy too Whats the default values for set these variables?

    Thank you

    opened by gledsoul 1
  • Super Slow at optim on linux Mint

    Super Slow at optim on linux Mint

    Have this on a fresh install of linux Mint. I'm running the example, 'python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg' and its taking FOREVER to do anything. I used to have it working at a decent speed on Ubuntu on the same hardware.

    When inspecting GPU and CPU usage, I see it start off with minimal GPU usage, and huge CPU usage. it slowly increases GPU usage over time until it has enough and then completes the rest in around the same time as before. As an example, it takes around 8 minutes to figure out that there isn't enough VRAM for the selected image size, whereas previously on my Ubuntu installation that would take a matter of seconds. Any idea why it would take so much longer on Mint? And what I can do to remedy this?

    opened by pingu2k4 1
  • "TypeError: 'torch.FloatTensor' object is not callable" running demo on CPU

    Sorry if I'm missing something, I'm unfamiliar with PyTorch. I'm running the demo on CPU on a Mac and getting the following error:

      File "camera_demo.py", line 93, in <module>
        main()
      File "camera_demo.py", line 90, in main
        run_demo(args, mirror=True)
      File "camera_demo.py", line 60, in run_demo
        simg = style_v.data().numpy()
    TypeError: 'torch.FloatTensor' object is not callable
    

    Thanks.

    opened by Carmezim 1
  • optim with normal RAM?

    optim with normal RAM?

    Hi,

    So I spent around 24 hours so far training a model on my style images, got the results out by using the model on eval and so far they're not great. When I use the optim function with the styles however the results are pretty decent, however I am limited by my VRAM which is 6GB as to what size images I can output. Having a lot more RAM available, I was hoping I could do pretty decently sized images, but it seems that I can only get much larger images with eval. Does eval use normal RAM instead of VRAM?

    I will continue training my model so that I can use eval in the future, whether I can do larger images with optim or not, but no idea how much more training is required to make it anywhere near a respectable result.

    What sort of overall loss value should I be aiming for? Does the number of style images make a difference to what I should expect?

    opened by pingu2k4 1
  • Error Training TypeError: 'NoneType' object is not callable

    Error Training TypeError: 'NoneType' object is not callable

    I was able to get my environment setup successfully to run eval; however, now, trying train I'm running into an issue. Not sure if it's a syntax issues or if something else is going on? You help is greatly appreciated.

    
    #!/bin/bash
    #SBATCH --job-name=train-pytorch
    #SBATCH --mail-type=END,FAIL
    #SBATCH [email protected]
    #SBATCH --ntasks=1
    #SBATCH --time=00:10:00
    #SBATCH --mem=8000
    #SBATCH --gres=gpu:p100:2
    #SBATCH --cpus-per-task=6
    #SBATCH --output=%x_%j.log
    #SBATCH --error=%x_%j.err
    
    source ~/scratch/moldach/PyTorch-Style-Transfer/experiments/venv/bin/activate
    
    python main.py train \
      --epochs 4 \
      --style-folder /scratch/moldach/PyTorch-Style-Transfer/experiments/images/9styles \
      --vgg-model-dir vgg-model/ \
      --save-model-dir checkpoint/
    
    
    /scratch/moldach/first-order-model/venv/lib/python3.6/site-packages/torchvision/transforms/transforms.py:188: UserWarning: The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.
      "please use transforms.Resize instead.")
    Traceback (most recent call last):
      File "main.py", line 295, in <module>
        main()
      File "main.py", line 41, in main
        train(args)
      File "main.py", line 135, in train
        utils.init_vgg16(args.vgg_model_dir)
      File "/scratch/moldach/PyTorch-Style-Transfer/experiments/utils.py", line 102, in init_vgg16
        for (src, dst) in zip(vgglua.parameters()[0], vgg.parameters()):
    TypeError: 'NoneType' object is not callable
    
    

    pip freeze:

    $ pip freeze
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/nix/avx2
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/nix/generic
    -f /cvmfs/soft.computecanada.ca/custom/python/wheelhouse/generic
    cffi==1.11.5
    cloudpickle==0.5.3
    cycler==0.10.0
    dask==0.18.2
    dataclasses==0.8
    decorator==4.4.2
    future==0.18.2
    imageio==2.9.0
    imageio-ffmpeg==0.4.3
    kiwisolver==1.3.1
    matplotlib==3.3.4
    networkx==2.5
    numpy==1.19.1
    pandas==0.23.4
    Pillow==8.1.2
    pycparser==2.18
    pygit==0.1
    pyparsing==2.4.7
    python-dateutil==2.8.1
    pytz==2018.5
    PyWavelets==1.1.1
    PyYAML==5.1
    scikit-image==0.17.2
    scikit-learn==0.19.2
    scipy==1.4.1
    six==1.15.0
    tifffile==2020.9.3
    toolz==0.9.0
    torch==1.7.0
    torchfile==0.1.0
    torchvision==0.2.1
    tqdm==4.24.0
    typing-extensions==3.7.4.3
    
    opened by moldach 4
  • Color produced by eval doesn't match demo

    Color produced by eval doesn't match demo

    Hi ! Thanks for sharing the code. I've ran the eval program using the defaults provided and I noticed the color tends to be much dimmer than what is shown on the homepage here. Is there something that I am missing? The command I used was

    python main.py --style-image ./images/21styles/udnie.jpg --content-image ./images/content/venice-boat.jpg

    out

    opened by clarng 1
  • struct.error: unpack requires a buffer of 4 bytes

    struct.error: unpack requires a buffer of 4 bytes

    Dear author, Thank you so much for sharing a useful code. I able to run your evaluation code, but face the following error during runing of training code: File "main.py", line 41, in main train(args) File "main.py", line 135, in train utils.init_vgg16(args.vgg_model_dir) File "/home2/st118370/models/PyTorch-Multi-Style-Transfer/experiments/utils.py", line 100, in init_vgg16 vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7')) File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 424, in load return reader.read_obj() File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 310, in read_obj typeidx = self.read_int() File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 277, in read_int return self._read('i')[0] File "/home2/st118370/anaconda3/envs/pytorch-py3/lib/python3.7/site-packages/torchfile.py", line 271, in _read return struct.unpack(fmt, self.f.read(sz)) struct.error: unpack requires a buffer of 4 bytes

    how can i resolve this problem? kindly guide. thanks

    opened by MFarooqAit 1
  • vgg16.t7  unhashable type: 'numpy.ndarray

    vgg16.t7 unhashable type: 'numpy.ndarray

    hi

    I have put the vgg16.t7 into models folder, it's been detected correctly. However, the following problem happened.

    Traceback (most recent call last): File "main.py", line 295, in main() File "main.py", line 41, in main train(args) File "main.py", line 135, in train utils.init_vgg16(args.vgg_model_dir) File "C:\Users\user\Prepwork\Cap Project\PyTorch-Multi-Style-Transfer\experiments\utils.py", line 100, in init_vgg16 vgglua = load_lua(os.path.join(model_folder, 'vgg16.t7')) File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 424, in load return reader.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj obj._obj = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 385, in read_obj k = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 386, in read_obj v = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 370, in read_obj obj._obj = self.read_obj() File "C:\Users\user\anaconda3\envs\FTDS\lib\site-packages\torchfile.py", line 387, in read_obj obj[k] = v TypeError: unhashable type: 'numpy.ndarray'

    It does't work for pytorch-1.0.0 and 1.4.0, and giving the same error, how to deal with it? thanks !

    opened by Gavin-Evans 13
  • Different brush stroke size

    Different brush stroke size

    In your paper you wrote about the ability to train the model with different sizes of the style images to later get control over the brush stroke size. Did you implement this in either the pytorch or torch implementation? Greetings and keep up the great work

    opened by lpiribauer 0
Releases(v0.1)
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
This repository contains a pytorch implementation of "StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision".

StereoPIFu: Depth Aware Clothed Human Digitization via Stereo Vision | Project Page | Paper | This repository contains a pytorch implementation of "St

87 Dec 09, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Colar: Effective and Efficient Online Action Detection by Consulting Exemplars, CVPR 2022.

Colar: Effective and Efficient Online Action Detection by Consulting Exemplars This repository is the official implementation of Colar. In this work,

LeYang 246 Dec 13, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection

The code for our newly accepted paper in Pattern Recognition 2020: "U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection."

Xuebin Qin 6.5k Jan 09, 2023
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
Self-Supervised Image Denoising via Iterative Data Refinement

Self-Supervised Image Denoising via Iterative Data Refinement Yi Zhang1, Dasong Li1, Ka Lung Law2, Xiaogang Wang1, Hongwei Qin2, Hongsheng Li1 1CUHK-S

Zhang Yi 72 Jan 01, 2023
Implementation of Hourglass Transformer, in Pytorch, from Google and OpenAI

Hourglass Transformer - Pytorch (wip) Implementation of Hourglass Transformer, in Pytorch. It will also contain some of my own ideas about how to make

Phil Wang 61 Dec 25, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Robust Lane Detection via Expanded Self Attention (WACV 2022)

Robust Lane Detection via Expanded Self Attention (WACV 2022) Minhyeok Lee, Junhyeop Lee, Dogyoon Lee, Woojin Kim, Sangwon Hwang, Sangyoun Lee Overvie

Min Hyeok Lee 18 Nov 12, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Image super-resolution through deep learning

srez Image super-resolution through deep learning. This project uses deep learning to upscale 16x16 images by a 4x factor. The resulting 64x64 images

David Garcia 5.3k Dec 28, 2022
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021