Computing Shapley values using VAEAC

Overview

Shapley values and the VAEAC method

In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features", see Olsen et al. (2021).

The variational autoencoder with arbitrary condiditioning (VAEAC) approach is based on the work of (Ivanov et al., 2019). The VAEAC is an extension of the regular variational autoencoder (Kingma and Welling, 2019). Instead of giving a probabilistic representation for the distribution equation it gives a representation for the conditional distribution equation, for all possible feature subsets equation simultaneously, where equation is the set of all features.

To make the VAEAC methodology work in the Shapley value framework, established in the R-package Shapr (Sellereite and Jullum, 2019), we have made alterations to the original implementation of Ivanov.

The VAEAC model is implemented in Pytorch, hence, that portion of the repository is written in Python. To compute the Shapley values, we have written the necessary R-code to make the VAEAC approach run on top of the R-package shapr.

Setup

In addition to the prerequisites required by Ivanov, we also need several R-packages. All prerequisites are specified in requirements.txt.

This code was tested on Linux and macOS (should also work on Windows), Python 3.6.4, PyTorch 1.0. and R 4.0.2.

To user has to specify the system path to the Python environment and the system path of the downloaded repository in Source_Shapr_VAEAC.R.

Example

The following example shows how a random forest model is trained on the Abalone data set from the UCI machine learning repository, and how shapr explains the individual predictions.

Note that we only use Diameter (continuous), ShuckedWeight (continuous), and Sex (categorical) as features and let the response be Rings, that is, the age of the abalone.

# Import libraries
library(shapr)
library(ranger)
library(data.table)

# Load the R files needed for computing Shapley values using VAEAC.
source("/Users/larsolsen/Desktop/PhD/R_Codes/Source_Shapr_VAEAC.R")

# Set the working directory to be the root folder of the GitHub repository. 
setwd("~/PhD/Paper1/Code_for_GitHub")

# Read in the Abalone data set.
abalone = readRDS("data/Abalone.data")
str(abalone)

# Predict rings based on Diameter, ShuckedWeight, and Sex (categorical), using a random forrest model.
model = ranger(Rings ~ Diameter + ShuckedWeight + Sex, data = abalone[abalone$test_instance == FALSE,])

# Specifying the phi_0, i.e. the expected prediction without any features.
phi_0 <- mean(abalone$Rings[abalone$test_instance == FALSE])

# Prepare the data for explanation. Diameter, ShuckedWeight, and Sex correspond to 3,6,9.
explainer <- shapr(abalone[abalone$test_instance == FALSE, c(3,6,9)], model)
#> The specified model provides feature classes that are NA. The classes of data are taken as the truth.

# Train the VAEAC model with specified parameters and add it to the explainer
explainer_added_vaeac = add_vaeac_to_explainer(
  explainer, 
  epochs = 30L,
  width = 32L,
  depth = 3L,
  latent_dim = 8L,
  lr = 0.002,
  num_different_vaeac_initiate = 2L,
  epochs_initiation_phase = 2L,
  validation_iwae_num_samples = 25L,
  verbose_summary = TRUE)

# Computing the actual Shapley values with kernelSHAP accounting for feature dependence using
# the VAEAC distribution approach with parameters defined above
explanation = explain.vaeac(abalone[abalone$test_instance == TRUE][1:8,c(3,6,9)],
                            approach = "vaeac",
                            explainer = explainer_added_vaeac,
                            prediction_zero = phi_0,
                            which_vaeac_model = "best")

# Printing the Shapley values for the test data.
# For more information about the interpretation of the values in the table, see ?shapr::explain.
print(explanation$dt)
#>        none   Diameter  ShuckedWeight        Sex
#> 1: 9.927152  0.63282471     0.4175608  0.4499676
#> 2: 9.927152 -0.79836795    -0.6419839  1.5737014
#> 3: 9.927152 -0.93500891    -1.1925897 -0.9140548
#> 4: 9.927152  0.57225851     0.5306906 -1.3036202
#> 5: 9.927152 -1.24280895    -1.1766845  1.2437640
#> 6: 9.927152 -0.77290507    -0.5976597  1.5194251
#> 7: 9.927152 -0.05275627     0.1306941 -1.1755597
#> 8: 9.927153  0.44593977     0.1788577  0.6895557

# Finally, we plot the resulting explanations.
plot(explanation, plot_phi0 = FALSE)

Citation

If you find this code useful in your research, please consider citing our paper:

@misc{Olsen2021Shapley,
      title={Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features}, 
      author={Lars Henry Berge Olsen and Ingrid Kristine Glad and Martin Jullum and Kjersti Aas},
      year={2021},
      eprint={2111.13507},
      archivePrefix={arXiv},
      primaryClass={stat.ML},
      url={https://arxiv.org/abs/2111.13507}
}

References

Ivanov, O., Figurnov, M., and Vetrov, D. (2019). “Variational Autoencoder with ArbitraryConditioning”. In:International Conference on Learning Representations.

Kingma, D. P. and Welling, M. (2014). "Auto-Encoding Variational Bayes". In: 2nd International Conference on Learning Representations, ICLR 2014.

Olsen, L. H. B., Glad, I. K., Jullum, M. and Aas, K. (2021). "Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features".

Sellereite, N. and Jullum, M. (2019). “shapr: An R-package for explaining machine learningmodels with dependence-aware Shapley values”. In:Journal of Open Source Softwarevol. 5,no. 46, p. 2027.

BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Object Detection and Instance Segmentation.

Swin Transformer for Object Detection This repo contains the supported code and configuration files to reproduce object detection results of Swin Tran

Swin Transformer 1.4k Dec 30, 2022
Self-Supervised Deep Blind Video Super-Resolution

Self-Blind-VSR Paper | Discussion Self-Supervised Deep Blind Video Super-Resolution By Haoran Bai and Jinshan Pan Abstract Existing deep learning-base

Haoran Bai 35 Dec 09, 2022
Progressive Growing of GANs for Improved Quality, Stability, and Variation

Progressive Growing of GANs for Improved Quality, Stability, and Variation — Official TensorFlow implementation of the ICLR 2018 paper Tero Karras (NV

Tero Karras 5.9k Jan 05, 2023
Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks.

FDRL-PC-Dyspan Federated Deep Reinforcement Learning for the Distributed Control of NextG Wireless Networks. This repository contains the entire code

Peyman Tehrani 17 Nov 18, 2022
Transformer - Transformer in PyTorch

Transformer 完成进度 Embeddings and PositionalEncoding with example. MultiHeadAttent

Tianyang Li 1 Jan 06, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

Stereo Radiance Fields (SRF): Learning View Synthesis for Sparse Views of Novel Scenes

111 Dec 29, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera

Felix Wimbauer 494 Jan 06, 2023
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022