SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

Overview

SiamMOT

SiamMOT is a region-based Siamese Multi-Object Tracking network that detects and associates object instances simultaneously.

SiamMOT: Siamese Multi-Object Tracking,
Bing Shuai, Andrew Berneshawi, Xinyu Li, Davide Modolo, Joseph Tighe,

@inproceedings{shuai2021siammot,
  title={SiamMOT: Siamese Multi-Object Tracking},
  author={Shuai, Bing and Berneshawi, Andrew and Li, Xinyu and Modolo, Davide and Tighe, Joseph},
  booktitle={CVPR},
  year={2021}
}

Abstract

In this paper, we focus on improving online multi-object tracking (MOT). In particular, we introduce a region-based Siamese Multi-Object Tracking network, which we name SiamMOT. SiamMOT includes a motion model that estimates the instance’s movement between two frames such that detected instances are associated. To explore how the motion modelling affects its tracking capability, we present two variants of Siamese tracker, one that implicitly models motion and one that models it explicitly. We carry out extensive quantitative experiments on three different MOT datasets: MOT17, TAO-person and Caltech Roadside Pedestrians, showing the importance of motion modelling for MOT and the ability of SiamMOT to substantially outperform the state-of-the-art. Finally, SiamMOT also outperforms the winners of ACM MM’20 HiEve Grand Challenge on HiEve dataset. Moreover, SiamMOT is efficient, and it runs at 17 FPS for 720P videos on a single modern GPU.

Installation

Please refer to INSTALL.md for installation instructions.

Try SiamMOT demo

For demo purposes, we provide two tracking models -- tracking person (visible part) or jointly tracking person and vehicles (bus, car, truck, motorcycle, etc). The person tracking model is trained on COCO-17 and CrowdHuman, while the latter model is trained on COCO-17 and VOC12. Currently, both models used in demos use EMM as its motion model, which performs best among different alternatives.

In order to run the demo, use the following command:

python3 demos/demo.py --demo-video  PATH_TO_DEMO_VIDE --track-class person --dump-video True

You can choose person or person_vehicel for track-class such that person tracking or person/vehicle tracking model is used accordingly.

The model would be automatically downloaded to demos/models, and the visualization of tracking outputs is automatically saved to demos/demo_vis

We also provide several pre-trained models in model_zoos.md that can be used for demo.

Dataset Evaluation and Training

After installation, follow the instructions in DATA.md to setup the datasets. As a sanity check, the models presented in model_zoos.md can be used to for benchmark testing.

Use the following command to train a model on an 8-GPU machine: Before running training / inference, setup the configuration file properly

python3 -m torch.distributed.launch --nproc_per_node=8 tools/train_net.py --config-file configs/dla/DLA_34_FPN.yaml --train-dir PATH_TO_TRAIN_DIR --model-suffix MODEL_SUFFIX 

Use the following command to test a model on a single-GPU machine:

python3 tools/test_net.py --config-file configs/dla/DLA_34_FPN.yaml --output-dir PATH_TO_OUTPUT_DIR --model-file PATH_TO_MODEL_FILE --test-dataset DATASET_KEY --set val

Note: If you get an error ModuleNotFoundError: No module named 'siammot' when running in the git root then make sure your PYTHONPATH includes the current directory, which you can add by running: export PYTHONPATH=.:$PYTHONPATH or you can explicitly add the project to the path by replacing the '.' in the export command with the absolute path to the git root.

Multi-gpu testing is going to be supported later.

Version

This is the preliminary version specifically for Airbone Object Tracking (AOT) workshop. The current version only support the motion model being EMM.

We will add more motion models in the next version, together with more features, stay tuned.

License

This project is licensed under the Apache-2.0 License.

Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations"

Source code for our paper "Improving Empathetic Response Generation by Recognizing Emotion Cause in Conversations" this repository is maintained by bo

Yuhan Liu 24 Nov 29, 2022
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021)

Evaluation, Training, Demo, and Inference of DeFMO DeFMO: Deblurring and Shape Recovery of Fast Moving Objects (CVPR 2021) Denys Rozumnyi, Martin R. O

Denys Rozumnyi 139 Dec 26, 2022
Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network

DroneCrowd Paper Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. Introduction This paper proposes a space-time multi-scale atte

VisDrone 98 Nov 16, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Pytorch for Segmentation

Pytorch for Semantic Segmentation This repo has been deprecated currently and I will not maintain it. Meanwhile, I strongly recommend you can refer to

ycszen 411 Nov 22, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

A resource for learning about ML, DL, PyTorch and TensorFlow. Feedback always appreciated :)

Aladdin Persson 4.7k Jan 08, 2023
[KDD 2021, Research Track] DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neural Networks

DiffMG This repository contains the code for our KDD 2021 Research Track paper: DiffMG: Differentiable Meta Graph Search for Heterogeneous Graph Neura

AutoML Research 24 Nov 29, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Jan 01, 2023
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022