HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

Related tags

Deep LearningHSC4D
Overview

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

[Project page | Video]

Getting start

Dataset (Click here to download)

The large indoor and outdoor scenes in our dataset. Left: a climbing gym (1200 m2). Middle: a lab building with an outside courtyard 4000 m2. Right: a loop road scene 4600 m2

Data structure

Dataset root/
├── [Place_holder]/
|  ├── [Place_holder].bvh     # MoCap data from Noitom Axis Studio (PNStudio)
|  ├── [Place_holder]_pos.csv # Every joint's roration, generated from `*_bvh`
|  ├── [Place_holder]_rot.csv # Every joint's translation, generated from `*_bvh`
|  ├── [Place_holder].pcap    # Raw data from the LiDAR
|  └── [Place_holder]_lidar_trajectory.txt  # N×9 format file
├── ...
|
└── scenes/
   ├── [Place_holder].pcd
   ├── [Place_holder]_ground.pcd
   ├── ...
   └── ...
  1. Place_holder can be replaced to campus_raod, climbing_gym, and lab_building.
  2. *_lidar_trajectory.txt is generated by our Mapping method and manually calibrated with corresponding scenes.
  3. *_bvh and *_pcap are raw data from sensors. They will not be used in the following steps.
  4. You can test your SLAM algorithm by using *_pcap captured from Ouster1-64 with 1024×20Hz.

Preparation

  • Download basicModel_neutral_lbs_10_207_0_v1.0.0.pkl and put it in smpl directory.
  • Downloat the dataset and modify dataset_root and data_name in configs/sample.cfg.
dataset_root = /your/path/to/datasets
data_name = campus_road # or lab_building, climbing_gym

Requirement

Our code is tested under:

  • Ubuntu: 18.04
  • Python: 3.8
  • CUDA: 11.0
  • Pytorch: 1.7.0

Installation

conda create -n hsc4d python=3.8
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=11.0 -c pytorch
pip install open3d chumpy scipy configargparse matplotlib pathlib pandas opencv-python torchgeometry tensorboardx
  • Note: For mask conversion compatibility in PyTorch 1.7.0, you need to manually edit the source file in torchgeometry. Follow the guide here
  $ vi /home/dyd/software/anaconda3/envs/hsc4d/lib/python3.8/site-packages/torchgeometry/core/conversions.py

  # mask_c1 = mask_d2 * (1 - mask_d0_d1)
  # mask_c2 = (1 - mask_d2) * mask_d0_nd1
  # mask_c3 = (1 - mask_d2) * (1 - mask_d0_nd1)
  mask_c1 = mask_d2 * ~(mask_d0_d1)
  mask_c2 = ~(mask_d2) * mask_d0_nd1
  mask_c3 = ~(mask_d2) * ~(mask_d0_nd1)
  • Note: When nvcc fatal error occurs.
export TORCH_CUDA_ARCH_LIST="8.0" #nvcc complier error. nvcc fatal: Unsupported gpu architecture 

Preprocess

  • Transfer Mocap data [Optional, data provided]

    pip install bvhtoolbox # https://github.com/OlafHaag/bvh-toolbox
    bvh2csv /your/path/to/campus_road.bvh
    • Output: campus_road_pos.csv, campus_road_rot.csv
  • LiDAR mapping [Optional, data provided]

    • Process pcap file
      cd initialize
      pip install ouster-sdk 
      python ouster_pcap_to_txt.py -P /your/path/to/campus_road.pcap [-S start_frame] [-E end_frame]
    • Run your Mapping/SLAM algorithm.

    • Coordinate alignment (About 5 degree error after this step)

      1. The human stands as an A-pose before capture, and the human's face direction is regarded as scene's $Y$-axis direction.
      2. Rotate the scene cloud to make its $Z$-axis perpendicular to the starting position's ground.
      3. Translate the scene to make its origin to the first SMPL model's origin on the ground.
      4. LiDAR's ego motion $T^W$ and $R^W$ are translated and rotated as the scene does.
    • Output: campus_road_lidar_trajectory.txt, scenes/campus_road.pcd

  • Data preprocessing for optimization.

    python preprocess.py --dataset_root /your/path/to/datasets -fn campus_road -D 0.1

Data fusion

To be added

Data optimization

python main.py --config configs/sample.cfg

Visualization

To be added

Copyright

The HSC4D dataset is published under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.You must attribute the work in the manner specified by the authors, you may not use this work for commercial purposes and if you alter, transform, or build upon this work, you may distribute the resulting work only under the same license. Contact us if you are interested in commercial usage.

Bibtex

@misc{dai2022hsc4d,
    title={HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR},
    author={Yudi Dai and Yitai Lin and Chenglu Wen and Siqi Shen and Lan Xu and Jingyi Yu and Yuexin Ma and Cheng Wang},
    year={2022},
    eprint={2203.09215},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints

CLGo This is an official repository of CLGo: Learning to Predict 3D Lane Shape and Camera Pose from a Single Image via Geometry Constraints An earlier

刘芮金 32 Dec 20, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
A Unified Framework and Analysis for Structured Knowledge Grounding

UnifiedSKG 📚 : Unifying and Multi-Tasking Structured Knowledge Grounding with Text-to-Text Language Models Code for paper UnifiedSKG: Unifying and Mu

HKU NLP Group 370 Dec 21, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
RodoSol-ALPR Dataset

RodoSol-ALPR Dataset This dataset, called RodoSol-ALPR dataset, contains 20,000 images captured by static cameras located at pay tolls owned by the Ro

Rayson Laroca 45 Dec 15, 2022
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

Code for our ICCV 2021 Paper "OadTR: Online Action Detection with Transformers".

66 Dec 15, 2022