CTF Challenge for CSAW Finals 2021

Overview

Terminal Velocity

Misc CTF Challenge for CSAW Finals 2021

This is a challenge I've had in mind for almost 15 years and never got around to building until now. It (ab)uses a number of terminal escape codes to trigger both legitimate and scary and potentially dangerous terminal features, many of which are enabled by default in modern terminals! While a number of more serious exploits were patched in terminals since this original idea (it used to be trivial to kill many terminals with such escapes as "move cursor left 2^32 times or other similar ridiculous instructions), but most of the remaining shenanigans are merely abusing "legitimate" features that maybe are undesirable when simply viewing a text file or connecting to a network socket.

It's worth noting that because this service uses the usual netcat connection from clients, it will be line-buffered. This prevents some more egregious abuse of terminal escapes and requires some slight trickery to receive the return escape codes as hidden parts of existing responses during the various "press enter to continue" or similar prompts. Using something like telnet or ssh would fix this and allow for even more dangerous terminal manipulations.

Part of the goal of this challenge is to encourage people to be a bit more careful even when taking actions they might otherwise consider benign. Text should be considered harmful.

Deploying / Running

$ docker build -t terminal .
$ docker run -it -p 3535:3535 terminal

Or just run python3 service.py and connect to your local machine on port 3535.

Solutions

Two play-testers provided (partial) solutions which needs some tweaks for the final updates. This writeup covers the main tasks:

Level 0

When you first connect to the server you simply see a password (Level 0 Is Really Easy) which when pasted is indeed, correct.

The only tricky thing is if you try to sniff the connection or use a non-terminal to access it, you'll see that the password is originally something else that is overwritten.

Screen Check

After solving level 0, you will be asked "What is the proper screen size"? Some people may simply know the default terminal size is 80x24 and adjust accordingly, but if not, the server helpfully tells you whether your terminal was too big or too small after verifying that it can read your screen dimensions. If you're not running a real terminal, you'll need to learn to fake the correct response.

Level 1

Level one simply prints the password out in a black text on a black background. You can simply copy/paste it from the terminal but if you try to view it from the raw network traffic you will see that it is interspersed with unrelated escape codes that you have to filter out.

Correct pass: G1V3M3TH3N3XTL3V3L

Feature Check: Iconify

The next check will attempt to icnoify your terminal and query the status of the terminal (it also has the side effect of querying a user's iTerm current profile name). Correct approaches to solving this usually involve analyzing the query string that is sent and finding what is being looked up. Note that some VT100 references will give misleading answers and the oracle should always be consulted (if people get stuck I'd give this as a hint out since it's a better reference. All references are painfully hard to search though which is hilarious.)

Note: if you don't have a terminal capable of following this live (Terminal.app is the only one I know that does it all correctly) and you don't want to write a terminal emulator/manual interaction script (definitely the right approach for what's coming next), then you can work around it by just pressing backspace twice and entering 2t before pressing enter.

Level 2

Level two is similar except the line of correct text is erased after rendered. An emulator that simulates specific character drawing will be able to recover the text, or a filter that blocks the "erase" escape codes (though there are several used) can work here.

Correct password: HalfwayDone

Level 3

Level three is pretty nasty (the user is warned though!)

It will attempt to do all sorts of nasty things to their terminal including printing locking the prompt, crashing it with bogus operations. One printer accidentally spewed out paper and one Windows machine blue screened during the testing of these features, so this can be tough! (The printer bug was fixed with all the aforementioned iTerm detection above ). By this point users should be strongly considering not directly interacting with the port but using pwntools with heavy filtering or some other method. (Fun fact, Windows terminal actually looks super robust against these sorts of shenanigans and the developers even built an entire fuzzing harness that really needs to be run against all other major browsers which still have many bugs).

Anyway, for players who have been building a very simply terminal emulator to this point, just having the ability to emulate three different cases of move and draw commands will let them re-create the correct text for this level.

Correct password: BobTheBuilder

Level 4

The final level brings image formats! Yup, there are actually many different valid forms of images that can be displayed in terminals. Though, if I've done my job correctly, the previous level will have broken or rendered useless most of the terminals that otherwise could just show the images directly.

The three images that are displayed are:

  1. Simple base64 encoded file in iTerm image format
  2. A sixel and
  3. A Tektronix image

There are several different approaches/tools to solving the last two images. Just using a compatible terminal and separately cat'ing the file after extracting them from the session is sufficient.

xTerm has the only support for the final Tektronix image format I have found. When assembled, the images reveal the final passcode: PINEY_FLATS_TN_USA a random city with no meaning at all behind it.

Entering the final password reveals the flag for the challenge!

Hopefully people have a lot more respect about what their terminals are capable of after working on this challenge and maybe even take more care when randomly connecting to servers on the internet.

Owner
Jordan
Jordan
[ACM MM 2021] Diverse Image Inpainting with Bidirectional and Autoregressive Transformers

Diverse Image Inpainting with Bidirectional and Autoregressive Transformers Installation pip install -r requirements.txt Dataset Preparation Given the

Yingchen Yu 25 Nov 09, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
Repository for publicly available deep learning models developed in Rosetta community

trRosetta2 This package contains deep learning models and related scripts used by Baker group in CASP14. Installation Linux/Mac clone the package git

81 Dec 29, 2022
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
[IEEE TPAMI21] MobileSal: Extremely Efficient RGB-D Salient Object Detection [PyTorch & Jittor]

MobileSal IEEE TPAMI 2021: MobileSal: Extremely Efficient RGB-D Salient Object Detection This repository contains full training & testing code, and pr

Yu-Huan Wu 52 Jan 06, 2023
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh

generate_cloud_points Given a 2D triangle mesh, we could randomly generate cloud points that fill in the triangle mesh. Run python disp_mesh.py Or you

Peng Yu 2 Dec 24, 2021
Pywonderland - A tour in the wonderland of math with python.

A Tour in the Wonderland of Math with Python A collection of python scripts for drawing beautiful figures and animating interesting algorithms in math

Zhao Liang 4.1k Jan 03, 2023
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
The implementation of the CVPR2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes"

STAR-FC This code is the implementation for the CVPR 2021 paper "Structure-Aware Face Clustering on a Large-Scale Graph with 10^7 Nodes" 🌟 🌟 . 🎓 Re

Shuai Shen 87 Dec 28, 2022
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022