PlenOctrees: NeRF-SH Training & Conversion

Overview

PlenOctrees Official Repo: NeRF-SH training and conversion

This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting part of the code release for:

PlenOctrees for Real Time Rendering of Neural Radiance Fields
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, Angjoo Kanazawa

https://alexyu.net/plenoctrees

Please see the following repository for our C++ PlenOctrees volume renderer: https://github.com/sxyu/volrend

Setup

Please use conda for a replicable environment.

conda env create -f environment.yml
conda activate plenoctree
pip install --upgrade pip

Or you can install the dependencies manually by:

conda install pytorch torchvision cudatoolkit=11.0 -c pytorch
conda install tqdm
pip install -r requirements.txt

[Optional] Install GPU and TPU support for Jax. This is useful for NeRF-SH training. Remember to change cuda110 to your CUDA version, e.g. cuda102 for CUDA 10.2.

pip install --upgrade jax jaxlib==0.1.65+cuda110 -f https://storage.googleapis.com/jax-releases/jax_releases.html

NeRF-SH Training

We release our trained NeRF-SH models as well as converted plenoctrees at Google Drive. You can also use the following commands to reproduce the NeRF-SH models.

Training and evaluation on the NeRF-Synthetic dataset (Google Drive):

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/Plenoctree/checkpoints/syn_sh16/
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

Note for SCENE=mic, we adopt a warmup learning rate schedule (--lr_delay_steps 50000 --lr_delay_mult 0.01) to avoid unstable initialization.

Training and evaluation on TanksAndTemple dataset (Download Link) from the NSVF paper:

export DATA_ROOT=./data/TanksAndTemple/
export CKPT_ROOT=./data/Plenoctree/checkpoints/tt_sh25/
export SCENE=Barn
export CONFIG_FILE=nerf_sh/config/tt

python -m nerf_sh.train \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

python -m nerf_sh.eval \
    --chunk 4096 \
    --train_dir $CKPT_ROOT/$SCENE/ \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

PlenOctrees Conversion and Optimization

Before converting the NeRF-SH models into plenoctrees, you should already have the NeRF-SH models trained/downloaded and placed at ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/. Also make sure you have the training data placed at ./data/{NeRF/nerf_synthetic, TanksAndTemple}.

To reproduce our results in the paper, you can simplly run:

# NeRF-Synthetic dataset
python -m octree.task_manager octree/config/syn_sh16.json --gpus="0 1 2 3"

# TanksAndTemple dataset
python -m octree.task_manager octree/config/tt_sh25.json --gpus="0 1 2 3"

The above command will parallel all scenes in the dataset across the gpus you set. The json files contain dedicated hyper-parameters towards better performance (PSNR, SSIM, LPIPS). So in this setting, a 24GB GPU is needed for each scene and in averange the process takes about 15 minutes to finish. The converted plenoctree will be saved to ./data/PlenOctree/checkpoints/{syn_sh16, tt_sh25}/$SCENE/octrees/.

Below is a more straight-forward script for demonstration purpose:

export DATA_ROOT=./data/NeRF/nerf_synthetic/
export CKPT_ROOT=./data/PlenOctree/checkpoints/syn_sh16
export SCENE=chair
export CONFIG_FILE=nerf_sh/config/blender

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz

python -m octree.optimization \
    --input $CKPT_ROOT/$SCENE/tree.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree_opt.npz

python -m octree.evaluation \
    --input $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/

# [Optional] Only used for in-browser viewing.
python -m octree.compression \
    $CKPT_ROOT/$SCENE/octrees/tree_opt.npz \
    --out_dir $CKPT_ROOT/$SCENE/ \
    --overwrite

MISC

Project Vanilla NeRF to PlenOctree

A vanilla trained NeRF can also be converted to a plenoctree for fast inference. To mimic the view-independency propertity as in a NeRF-SH model, we project the vanilla NeRF model to SH basis functions by sampling view directions for every points in the space. Though this makes converting vanilla NeRF to a plenoctree possible, the projection process inevitability loses the quality of the model, even with a large amount of sampling view directions (which takes hours to finish). So we recommend to just directly train a NeRF-SH model end-to-end.

Below is a example of projecting a trained vanilla NeRF model from JaxNeRF repo (Download Link) to a plenoctree. After extraction, you can optimize & evaluate & compress the plenoctree just like usual:

export DATA_ROOT=./data/NeRF/nerf_synthetic/ 
export CKPT_ROOT=./data/JaxNeRF/jaxnerf_models/blender/ 
export SCENE=drums
export CONFIG_FILE=nerf_sh/config/misc/proj

python -m octree.extraction \
    --train_dir $CKPT_ROOT/$SCENE/ --is_jaxnerf_ckpt \
    --config $CONFIG_FILE \
    --data_dir $DATA_ROOT/$SCENE/ \
    --output $CKPT_ROOT/$SCENE/octrees/tree.npz \
    --projection_samples 100 \
    --radius 1.3

Note --projection_samples controls how many sampling view directions are used. More sampling view directions give better projection quality but takes longer time to finish. For example, for the drums scene in the NeRF-Synthetic dataset, 100 / 10000 sampling view directions takes about 2 mins / 2 hours to finish the plenoctree extraction. It produce raw plenoctrees with PSNR=22.49 / 23.84 (before optimization). Note that extraction from a NeRF-SH model produce a raw plenoctree with PSNR=25.01.

Owner
Alex Yu
Undergrad at UC Berkeley
Alex Yu
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
Hybrid CenterNet - Hybrid-supervised object detection / Weakly semi-supervised object detection

Hybrid-Supervised Object Detection System Object detection system trained by hybrid-supervision/weakly semi-supervision (HSOD/WSSOD): This project is

5 Dec 10, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Source codes of CenterTrack++ in 2021 ICME Workshop on Big Surveillance Data Processing and Analysis

MOT Tracked object bounding box association (CenterTrack++) New association method based on CenterTrack. Two new branches (Tracked Size and IOU) are a

36 Oct 04, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022
Scale-aware Automatic Augmentation for Object Detection (CVPR 2021)

SA-AutoAug Scale-aware Automatic Augmentation for Object Detection Yukang Chen, Yanwei Li, Tao Kong, Lu Qi, Ruihang Chu, Lei Li, Jiaya Jia [Paper] [Bi

DV Lab 182 Dec 29, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
A simple editor for captions in .SRT file extension

WaySRT A simple editor for captions in .SRT file extension The program doesn't use any external dependecies, just run: python way_srt.py {file_name.sr

Gustavo Lopes 3 Nov 16, 2022
TAPEX: Table Pre-training via Learning a Neural SQL Executor

TAPEX: Table Pre-training via Learning a Neural SQL Executor The official repository which contains the code and pre-trained models for our paper TAPE

Microsoft 157 Dec 28, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022