HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

Overview

HCQ: Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval

[toc]

1. Introduction

This repository provides the code for our paper at TheWebConf 2022:

Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval. Jinpeng Wang, Bin Chen, Dongliang Liao, Ziyun Zeng, Gongfu Li, Shu-Tao Xia, Jin Xu. [arXiv].

Our proposed Hybrid Contrastive Quantization (HCQ) is the first quantization learning method for cross-view (e.g., text-to-video) retrieval, which learns both coarse-grained and fine-grained quantizations with transformers. Experiments on MSRVTT, LSMDC and ActivityNet Captions datasets demonstrate that it can achieve competitive performance with state-of-the-art non-compressed retrieval methods while showing high efficiency in storage and computation.

In the following, we will guide you how to use this repository step by step. 🤗

2. Preparation

git clone https://github.com/gimpong/WWW22-HCQ.git

2.1 Requirements

  • python 3.7.4
  • gensim 4.1.2
  • h5py 3.6.0
  • numpy 1.17.3
  • pandas 1.2.3
  • pytorch-warmup 0.0.4
  • scikit-learn 0.23.0
  • scipy 1.6.1
  • tensorboardX 2.4.1
  • torch 1.6.0+cu101
  • transformers 3.1.0
cd WWW22-HCQ
# Install the requirements
pip install -r requirements.txt

We conduct each training experiment on a single NVIDIA® Tesla® V100 GPU (32 GB).

2.2 Download the features

Before running the code, we need to download the datasets and arrange them in the "data" directory properly. We use the video features provided by the authors of MMT. These features can be downloaded from this page by running the following commands:

# Create and move to WWW22-HCQ/data directory
cd data
# Download the video features
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/MSRVTT.tar.gz
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/activity-net.tar.gz
wget http://pascal.inrialpes.fr/data2/vgabeur/video-features/LSMDC.tar.gz
# Extract the video features
tar -xvf MSRVTT.tar.gz
tar -xvf activity-net.tar.gz
tar -xvf LSMDC.tar.gz

3. Training and Evaluation

3.1 Training from scratch

Let us take "training HCQ on MSRVTT dataset ('1k-A' split)" as an example:

# working directory: WWW22-HCQ/
python -m train --config configs/HCQ_MSRVTT_1kA.json

Expected results:

MSRVTT_jsfusion_test:
 t2v_metrics/R1/final_eval: 25.9
 t2v_metrics/R5/final_eval: 54.8
 t2v_metrics/R10/final_eval: 69.0
 t2v_metrics/R50/final_eval: 88.8
 t2v_metrics/MedR/final_eval: 5.0
 t2v_metrics/MeanR/final_eval: 28.062
 t2v_metrics/geometric_mean_R1-R5-R10/final_eval: 46.09386629981193
 v2t_metrics/R1/final_eval: 26.3
 v2t_metrics/R5/final_eval: 57.0
 v2t_metrics/R10/final_eval: 70.1
 v2t_metrics/R50/final_eval: 90.0
 v2t_metrics/MedR/final_eval: 4.0
 v2t_metrics/MeanR/final_eval: 25.1535
 v2t_metrics/geometric_mean_R1-R5-R10/final_eval: 47.18995255588879

After training, a folder with the same name as the configuration json file (e.g., "HCQ_MSRVTT_1kA") will be generated under WWW22-HCQ/exps/, which contains the model checkpoints, logs, tensorboard files, and so on.

For reproducing other experiments, please see the following tables. You can just replace the config json path with another in the training command.

3.1.1 Main results of HCQ (reported in Table 1-3 in our paper)

Model Dataset (+split) Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCQ MSRVTT (1k-A) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt  25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
MSRVTT (1k-B) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt  22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
MSRVTT (Full) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt  15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
LSMDC HCQ_LSMDC.json HCQ_LSMDC.txt  14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
ActivityNet Captions HCQ_ActivityNet.json HCQ_ActivityNet.txt  22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56

3.1.2 Result of Hybrid Contrastive Transformer (HCT), Dual Transformer (DT) + DCMH, and DT + JPQ (reported in Table 4 in our paper)

Model Dataset (+split) Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCT MSRVTT (1k-A) HCT_MSRVTT_1kA.json HCT_MSRVTT_1kA.txt 27.80 58.00 70.00 89.50 4 26.79 48.33 27.30 57.80 72.10 90.60 4 24.38 48.46
MSRVTT (1k-B) HCT_MSRVTT_1kB.json HCT_MSRVTT_1kB.txt 25.70 53.70 67.30 88.30 5 31.09 45.29 24.70 55.50 68.70 88.80 4 25.54 45.50
MSRVTT (Full) HCT_MSRVTT_full.json HCT_MSRVTT_full.txt 16.76 41.87 55.79 82.44 8 44.33 33.95 21.64 50.57 63.88 87.66 5 29.56 41.19
LSMDC HCT_LSMDC.json HCT_LSMDC.txt 16.40 34.10 43.10 69.10 17 72.39 28.89 14.10 33.70 41.40 67.40 18 73.54 26.99
ActivityNet Captions HCT_ActivityNet.json HCT_ActivityNet.txt 23.12 54.95 71.14 92.64 5 24.82 44.88 22.94 55.81 70.84 92.29 4 25.35 44.93
DT+DCMH MSRVTT (1k-A) DCMH_MSRVTT_1kA.json DCMH_MSRVTT_1kA.txt 19.00 48.40 62.20 85.30 6 32.40 38.53 20.00 50.20 63.30 84.90 5.5 31.69 39.91
MSRVTT (1k-B) DCMH_MSRVTT_1kB.json DCMH_MSRVTT_1kB.txt 15.80 41.30 57.70 83.30 8 40.42 33.52 16.60 44.10 58.10 84.10 7 37.17 34.91
MSRVTT (Full) DCMH_MSRVTT_full.json DCMH_MSRVTT_full.txt 8.46 28.16 41.51 73.48 15.75 67.90 21.46 9.57 31.30 46.62 78.13 12 55.30 24.08
LSMDC DCMH_LSMDC.json DCMH_LSMDC.txt 10.00 25.80 36.00 66.30 22 75.84 21.02 9.60 25.80 36.40 65.40 22.75 78.37 20.81
ActivityNet Captions DCMH_ActivityNet.json DCMH_ActivityNet.txt 12.34 38.40 55.62 84.62 8.5 63.41 29.76 12.45 39.19 55.52 84.58 8.5 65.43 30.03
DT+JPQ MSRVTT (1k-A) JPQ_MSRVTT_1kA.json JPQ_MSRVTT_1kA.txt 18.90 46.80 60.80 87.90 6 29.12 37.75 18.20 47.40 63.20 87.80 6 26.63 37.92
MSRVTT (1k-B) JPQ_MSRVTT_1kB.json JPQ_MSRVTT_1kB.txt 14.90 42.50 57.70 86.90 7 33.05 33.18 15.30 43.50 59.10 88.30 7 27.79 34.01
MSRVTT (Full) JPQ_MSRVTT_full.json JPQ_MSRVTT_full.txt 9.30 30.00 43.44 77.49 14 50.00 22.97 11.44 36.29 51.30 82.84 10 37.00 27.72
LSMDC JPQ_LSMDC.json JPQ_LSMDC.txt 9.50 23.40 34.30 63.10 25 80.27 19.68 7.80 22.80 32.80 62.50 27 79.98 18.00
ActivityNet Captions JPQ_ActivityNet.json JPQ_ActivityNet.txt 17.10 46.43 62.38 90.05 6 28.09 36.73 17.67 46.88 62.94 90.14 6 28.21 37.36

3.1.3 Results of HCQ under different hyper-parameters (reported in Figure 6 in our paper)

Experimental subject Dataset (+split) Setting Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
L: the number of active cluster(s) in GhostVLAD MSRVTT (1k-A) 1 HCQ_MSRVTT_1kA_L1.json HCQ_MSRVTT_1kA_L1.txt 25.10 54.10 67.30 89.10 5 28.21 45.04 22.70 55.10 67.90 89.90 4 25.35 43.96
3 HCQ_MSRVTT_1kA_L3.json HCQ_MSRVTT_1kA_L3.txt 25.70 52.90 66.90 89.30 5 28.39 44.97 26.70 55.00 68.50 90.50 4 24.20 46.51
7 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
15 HCQ_MSRVTT_1kA_L15.json HCQ_MSRVTT_1kA_L15.txt 24.20 54.40 68.10 88.70 5 27.15 44.76 23.60 55.00 69.40 90.60 4 22.79 44.83
31 HCQ_MSRVTT_1kA_L31.json HCQ_MSRVTT_1kA_L31.txt 26.20 54.50 67.90 88.00 5 27.57 45.94 25.00 55.60 69.10 90.00 4 24.38 45.80
MSRVTT (1k-B) 1 HCQ_MSRVTT_1kB_L1.json HCQ_MSRVTT_1kB_L1.txt 22.40 51.70 64.10 87.50 5 30.79 42.03 21.90 52.50 65.90 88.10 5 27.49 42.32
3 HCQ_MSRVTT_1kB_L3.json HCQ_MSRVTT_1kB_L3.txt 23.10 50.60 65.40 87.90 5 31.43 42.44 22.90 51.70 66.50 88.30 5 26.82 42.86
7 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
15 HCQ_MSRVTT_1kB_L15.json HCQ_MSRVTT_1kB_L15.txt 22.20 51.50 64.30 87.20 5 30.98 41.89 22.00 52.40 65.50 87.90 5 26.35 42.27
31 HCQ_MSRVTT_1kB_L31.json HCQ_MSRVTT_1kB_L31.txt 23.30 50.40 64.30 86.80 5 34.97 42.27 22.70 53.50 65.20 88.10 5 29.55 42.94
MSRVTT (Full) 1 HCQ_MSRVTT_full_L1.json HCQ_MSRVTT_full_L1.txt 14.31 38.63 52.24 80.94 10 44.35 30.68 17.32 44.98 59.60 86.89 7 31.44 35.95
3 HCQ_MSRVTT_full_L3.json HCQ_MSRVTT_full_L3.txt 14.45 39.16 51.84 80.80 10 45.37 30.84 17.56 46.19 60.37 86.82 6 31.24 36.58
7 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
15 HCQ_MSRVTT_full_L15.json HCQ_MSRVTT_full_L15.txt 14.01 37.53 51.47 81.74 10 41.04 30.02 16.19 44.08 59.80 86.99 7 29.87 34.94
31 HCQ_MSRVTT_full_L31.json HCQ_MSRVTT_full_L31.txt 14.48 38.56 52.64 81.61 9 43.41 30.86 18.09 45.99 59.67 87.22 7 30.54 36.75
LSMDC 1 HCQ_LSMDC_L1.json HCQ_LSMDC_L1.txt 14.40 31.50 42.50 68.50 17 73.09 26.81 13.00 30.60 40.50 68.10 19 71.16 25.26
3 HCQ_LSMDC_L3.json HCQ_LSMDC_L3.txt 14.00 33.80 44.10 68.30 17 73.91 27.53 12.90 32.80 42.80 68.50 17 71.74 26.26
7 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
15 HCQ_LSMDC_L15.json HCQ_LSMDC_L15.txt 14.10 32.60 41.90 69.80 17 71.28 26.81 13.10 31.40 40.70 68.30 18 71.21 25.58
31 HCQ_LSMDC_L31.json HCQ_LSMDC_L31.txt 12.80 31.90 41.90 68.30 17 72.03 25.77 12.50 32.20 42.00 67.20 17 72.26 25.66
ActivityNet Captions 1 HCQ_ActivityNet_L1.json HCQ_ActivityNet_L1.txt 19.77 50.54 65.77 89.06 5 33.26 40.35 20.03 51.33 66.36 89.40 5 32.14 40.86
3 HCQ_ActivityNet_L3.json HCQ_ActivityNet_L3.txt 20.95 52.21 68.35 90.54 5 30.22 42.13 20.72 53.10 68.70 90.50 5 29.18 42.28
7 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
15 HCQ_ActivityNet_L15.json HCQ_ActivityNet_L15.txt 21.33 52.15 68.07 90.16 5 30.00 42.31 22.07 52.92 68.31 90.46 5 29.26 43.05
31 HCQ_ActivityNet_L31.json HCQ_ActivityNet_L31.txt 20.56 52.45 69.07 89.91 5 31.39 42.07 21.66 52.96 68.60 90.81 5 29.67 42.85
M: the number of sub-codebooks in each quantization module MSRVTT (1k-A) 8 HCQ_MSRVTT_1kA_M8.json HCQ_MSRVTT_1kA_M8.txt 23.00 52.00 65.00 87.00 5 32.93 42.68 21.40 52.40 65.50 88.20 5 30.19 41.88
16 HCQ_MSRVTT_1kA_M16.json HCQ_MSRVTT_1kA_M16.txt 23.40 53.40 68.10 88.00 5 30.89 43.98 23.00 55.30 68.60 89.60 4 26.62 44.35
32 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
64 HCQ_MSRVTT_1kA_M64.json HCQ_MSRVTT_1kA_M64.txt 27.20 56.80 69.10 89.30 4 26.93 47.44 26.10 58.10 71.40 90.70 4 23.82 47.66
MSRVTT (1k-B) 8 HCQ_MSRVTT_1kB_M8.json HCQ_MSRVTT_1kB_M8.txt 20.10 47.00 60.60 84.10 6.75 37.97 38.54 18.90 47.90 63.10 86.40 6 36.00 38.51
16 HCQ_MSRVTT_1kB_M16.json HCQ_MSRVTT_1kB_M16.txt 22.50 49.50 62.70 85.90 6 33.82 41.18 21.10 52.10 65.60 87.10 5 32.43 41.62
32 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
64 HCQ_MSRVTT_1kB_M64.json HCQ_MSRVTT_1kB_M64.txt 24.50 51.60 66.20 87.70 5 31.31 43.74 23.60 54.30 67.40 88.80 4.75 27.56 44.20
MSRVTT (Full) 8 HCQ_MSRVTT_full_M8.json HCQ_MSRVTT_full_M8.txt 11.61 33.44 46.86 75.82 12 62.06 26.30 11.91 36.99 51.77 82.31 10 44.63 28.36
16 HCQ_MSRVTT_full_M16.json HCQ_MSRVTT_full_M16.txt 12.81 36.45 50.17 79.06 10 52.58 28.61 14.55 41.07 55.85 84.75 8 37.39 32.20
32 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
64 HCQ_MSRVTT_full_M64.json HCQ_MSRVTT_full_M64.txt 16.02 40.97 54.25 83.01 8 40.48 32.90 19.16 48.26 62.94 88.70 6 26.65 38.76
LSMDC 8 HCQ_LSMDC_M8.json HCQ_LSMDC_M8.txt 12.60 29.00 38.60 64.30 22 84.53 24.16 10.40 29.20 39.10 64.20 21 78.32 22.81
16 HCQ_LSMDC_M16.json HCQ_LSMDC_M16.txt 13.20 31.10 39.40 66.50 19 79.15 25.29 12.70 31.60 39.90 65.30 21 77.42 25.21
32 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
64 HCQ_LSMDC_M64.json HCQ_LSMDC_M64.txt 14.80 33.00 43.60 69.10 16 72.80 27.72 14.10 32.30 40.80 67.40 19 72.64 26.49
ActivityNet Captions 8 HCQ_ActivityNet_M8.json HCQ_ActivityNet_M8.txt 18.77 48.44 65.08 88.75 6 39.86 38.97 18.63 48.69 65.24 89.30 6 38.20 38.97
16 HCQ_ActivityNet_M16.json HCQ_ActivityNet_M16.txt 20.56 51.86 67.93 89.89 5 35.07 41.68 20.68 52.10 68.09 90.44 5 32.72 41.87
32 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
64 HCQ_ActivityNet_M64.json HCQ_ActivityNet_M64.txt 22.96 54.59 70.80 91.80 5 26.29 44.60 23.61 55.28 70.80 92.03 4 25.74 45.21
Batch size MSRVTT (1k-A) 16 HCQ_MSRVTT_1kA_bs16.json HCQ_MSRVTT_1kA_bs16.txt 24.20 53.40 67.40 89.90 5 25.86 44.33 23.60 54.10 67.60 89.60 4 22.96 44.19
32 HCQ_MSRVTT_1kA_bs32.json HCQ_MSRVTT_1kA_bs32.txt 24.20 54.00 67.20 89.90 5 27.50 44.45 24.00 54.30 66.90 90.10 4 25.09 44.34
64 HCQ_MSRVTT_1kA_bs64.json HCQ_MSRVTT_1kA_bs64.txt 26.20 55.90 67.90 88.70 4 26.67 46.33 25.50 55.80 69.00 89.90 4 23.37 46.13
128 (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
256 HCQ_MSRVTT_1kA_bs256.json HCQ_MSRVTT_1kA_bs256.txt 25.50 55.30 67.50 89.20 4 26.80 45.66 26.00 55.80 68.70 90.50 4 23.47 46.36
MSRVTT (1k-B) 16 HCQ_MSRVTT_1kB_bs16.json HCQ_MSRVTT_1kB_bs16.txt 22.00 49.40 64.50 87.60 6 31.45 41.23 18.50 51.80 66.20 89.60 5 26.30 39.88
32 HCQ_MSRVTT_1kB_bs32.json HCQ_MSRVTT_1kB_bs32.txt 22.60 49.20 65.10 87.10 6 32.03 41.68 21.40 52.30 65.90 88.20 5 28.20 41.94
64 HCQ_MSRVTT_1kB_bs64.json HCQ_MSRVTT_1kB_bs64.txt 23.60 50.70 64.60 86.60 5 33.26 42.60 21.10 51.60 64.60 89.00 5 28.00 41.28
128 (default) HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
256 HCQ_MSRVTT_1kB_bs256.json HCQ_MSRVTT_1kB_bs256.txt 22.50 50.20 63.80 87.00 5 30.96 41.61 21.30 52.40 65.90 88.30 5 27.50 41.90
MSRVTT (Full) 16 HCQ_MSRVTT_full_bs16.json HCQ_MSRVTT_full_bs16.txt 13.08 37.96 52.91 82.04 9 41.76 29.72 15.95 42.44 57.59 86.09 8 31.76 33.91
32 HCQ_MSRVTT_full_bs32.json HCQ_MSRVTT_full_bs32.txt 13.75 38.39 52.37 80.80 10 45.51 30.24 16.39 44.58 58.86 86.29 7 32.54 35.04
64 HCQ_MSRVTT_full_bs64.json HCQ_MSRVTT_full_bs64.txt 14.65 39.20 52.98 82.27 9 44.13 31.22 17.69 46.59 61.10 87.83 6 31.56 36.93
128 (default) HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
256 HCQ_MSRVTT_full_bs256.json HCQ_MSRVTT_full_bs256.txt 14.21 39.06 52.47 82.81 9 40.74 30.77 16.92 46.15 59.70 87.63 7 28.24 35.99
LSMDC 16 HCQ_LSMDC_bs16.json HCQ_LSMDC_bs16.txt 12.30 29.70 39.40 65.30 21 82.64 24.32 10.70 28.30 38.90 65.60 23 80.80 22.75
32 HCQ_LSMDC_bs32.json HCQ_LSMDC_bs32.txt 12.30 30.00 38.70 66.30 20 79.95 24.26 12.10 28.70 39.10 63.50 23 80.79 23.86
64 HCQ_LSMDC_bs64.json HCQ_LSMDC_bs64.txt 13.40 31.90 41.00 66.20 17 75.98 25.98 13.40 31.50 40.00 66.20 20 73.14 25.65
128 (default) HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
256 HCQ_LSMDC_bs256.json HCQ_LSMDC_bs256.txt 14.30 34.80 43.60 69.30 16 74.04 27.89 14.30 33.50 42.50 67.70 16 71.84 27.31
ActivityNet Captions 16 HCQ_ActivityNet_bs16.json HCQ_ActivityNet_bs16.txt 21.31 52.55 70.59 92.19 5 27.31 42.92 22.25 53.18 70.41 92.33 5 26.57 43.68
32 (default) HCQ_ActivityNet.json HCQ_ActivityNet.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
64 HCQ_ActivityNet_bs64.json HCQ_ActivityNet_bs64.txt 20.62 51.60 66.91 88.94 5 33.61 41.45 20.58 51.64 67.76 89.40 5 31.52 41.61
128 HCQ_ActivityNet_bs128.json HCQ_ActivityNet_bs128.txt 19.36 48.61 64.86 88.41 6 35.38 39.37 19.22 49.68 66.04 89.12 6 33.15 39.80
Ï„: the temperature factor in contrastive learning loss (Eq.(13)) MSRVTT (1k-A) 0.03 HCQ_MSRVTT_1kA_t0.03.json HCQ_MSRVTT_1kA_t0.03.txt 24.90 56.50 68.80 88.80 4 26.95 45.91 25.10 53.90 69.10 89.70 4 24.91 45.39
0.05 HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
0..07 HCQ_MSRVTT_1kA_t0.07.json HCQ_MSRVTT_1kA_t0.07.txt 25.40 52.80 67.50 88.60 5 30.40 44.90 25.90 57.00 68.00 90.00 4 27.78 46.48
0.1 HCQ_MSRVTT_1kA_t0.1.json HCQ_MSRVTT_1kA_t0.1.txt 23.90 52.10 66.20 87.10 5 32.74 43.52 22.50 54.00 67.10 87.70 5 31.09 43.36
0.12 HCQ_MSRVTT_1kA_t0.12.json HCQ_MSRVTT_1kA_t0.12.txt 22.60 49.60 65.00 87.90 6 34.53 41.77 21.20 50.80 65.10 87.30 5 33.46 41.23
0.15 HCQ_MSRVTT_1kA_t0.15.json HCQ_MSRVTT_1kA_t0.15.txt 18.20 44.50 60.20 86.80 7 36.74 36.53 16.50 46.80 61.40 85.80 6 35.20 36.19
MSRVTT (1k-B) 0.03 HCQ_MSRVTT_1kB_t0.03.json HCQ_MSRVTT_1kB_t0.03.txt 23.10 51.90 63.40 88.20 5 30.89 42.36 22.90 51.70 65.60 88.10 5 25.72 42.67
0.05 HCQ_MSRVTT_1kB.json HCQ_MSRVTT_1kB.txt 22.50 51.50 65.90 86.10 5 33.65 42.43 23.70 52.20 66.90 88.10 5 29.30 43.58
0..07 HCQ_MSRVTT_1kB_t0.07.json HCQ_MSRVTT_1kB_t0.07.txt 23.90 49.90 63.50 86.70 6 34.78 42.31 22.70 52.10 65.30 87.40 5 32.91 42.59
0.1 HCQ_MSRVTT_1kB_t0.1.json HCQ_MSRVTT_1kB_t0.1.txt 19.90 50.70 63.80 86.80 5 35.51 40.08 19.90 50.70 65.00 87.20 5 34.81 40.33
0.12 HCQ_MSRVTT_1kB_t0.12.json HCQ_MSRVTT_1kB_t0.12.txt 19.00 46.30 61.00 86.40 7 35.89 37.72 18.30 48.20 61.30 86.60 6 35.56 37.81
0.15 HCQ_MSRVTT_1kB_t0.15.json HCQ_MSRVTT_1kB_t0.15.txt 15.60 43.20 56.70 84.50 8 40.02 33.68 14.70 44.20 57.90 85.80 7 39.38 33.51
MSRVTT (Full) 0.03 HCQ_MSRVTT_full_t0.03.json HCQ_MSRVTT_full_t0.03.txt 14.11 38.29 50.77 80.00 10 45.90 30.16 16.32 45.45 59.80 86.86 7 31.64 35.40
0.05 HCQ_MSRVTT_full.json HCQ_MSRVTT_full.txt 15.15 38.53 51.00 81.34 10 46.22 30.99 18.26 44.88 59.06 87.16 7 30.96 36.45
0..07 HCQ_MSRVTT_full_t0.07.json HCQ_MSRVTT_full_t0.07.txt 14.15 37.89 51.17 81.30 10 46.22 30.16 16.72 43.18 58.09 85.95 8 33.70 34.75
0.1 HCQ_MSRVTT_full_t0.1.json HCQ_MSRVTT_full_t0.1.txt 13.58 36.56 49.06 80.43 11 49.80 28.99 14.35 39.13 53.65 84.15 9 39.70 31.11
0.12 HCQ_MSRVTT_full_t0.12.json HCQ_MSRVTT_full_t0.12.txt 12.31 34.25 49.13 79.50 11 50.45 27.46 12.24 35.65 50.64 82.98 10 44.35 28.06
0.15 HCQ_MSRVTT_full_t0.15.json HCQ_MSRVTT_full_t0.15.txt 10.10 30.64 43.88 76.79 14 55.40 23.86 9.16 29.90 45.69 79.00 13 53.01 23.22
LSMDC 0.03 HCQ_LSMDC_t0.03.json HCQ_LSMDC_t0.03.txt 14.90 32.00 42.50 66.20 18 76.14 27.26 12.90 31.80 40.80 66.80 20 72.31 25.58
0.05 HCQ_LSMDC.json HCQ_LSMDC.txt 14.50 33.60 43.10 68.20 18.5 75.95 27.59 13.70 33.20 42.80 66.10 17 74.28 26.90
0..07 HCQ_LSMDC_t0.07.json HCQ_LSMDC_t0.07.txt 12.80 32.30 43.40 67.70 17 75.92 26.18 12.80 32.70 42.90 67.30 17 76.30 26.19
0.1 HCQ_LSMDC_t0.1.json HCQ_LSMDC_t0.1.txt 12.50 30.10 40.80 66.90 18 81.02 24.85 11.80 29.00 40.30 64.20 19 82.29 23.98
0.12 HCQ_LSMDC_t0.12.json HCQ_LSMDC_t0.12.txt 12.00 28.10 38.80 66.40 20 81.93 23.56 11.90 27.60 39.60 64.80 20 84.15 23.52
0.15 HCQ_LSMDC_t0.15.json HCQ_LSMDC_t0.15.txt 10.70 26.10 36.00 64.90 23 82.81 21.58 9.10 24.00 35.10 62.80 25 88.27 19.72
ActivityNet Captions 0.03 HCQ_ActivityNet_t0.03.json HCQ_ActivityNet_t0.03.txt 22.15 52.78 68.58 91.38 5 26.42 43.12 21.74 52.47 68.70 91.38 5 26.65 42.79
0.05 HCQ_ActivityNet.json HCQ_ActivityNet.txt 21.96 53.30 68.99 90.89 5 29.67 43.23 21.94 52.94 69.21 90.69 5 29.12 43.16
0..07 HCQ_ActivityNet_t0.07.json HCQ_ActivityNet_t0.07.txt 22.19 53.69 70.12 91.21 5 30.71 43.72 23.00 54.85 70.14 91.38 5 29.08 44.56
0.1 HCQ_ActivityNet_t0.1.json HCQ_ActivityNet_t0.1.txt 22.11 52.08 68.23 91.34 5 28.34 42.83 21.72 53.33 69.60 91.60 5 27.19 43.20
0.12 HCQ_ActivityNet_t0.12.json HCQ_ActivityNet_t0.12.txt 19.20 50.52 67.99 91.95 5 30.12 40.40 20.09 51.66 68.23 91.89 5 29.16 41.37
0.15 HCQ_ActivityNet_t0.15.json HCQ_ActivityNet_t0.15.txt 17.00 47.14 65.49 91.42 6 31.43 37.44 18.59 48.81 65.30 91.84 6 32.65 38.99

3.1.4 Results of HCQ with different kinds of text encoders ("1k-A" split) (reported in Table 5 in our paper)

Model Text Encoder Config json Log Text-to-Video Retrieval Video-to-Text Retrieval
[email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10} [email protected] [email protected] [email protected] [email protected] Median rank Mean rank Geometric mean of recall@{1,5,10}
HCQ bert-base (default) HCQ_MSRVTT_1kA.json HCQ_MSRVTT_1kA.txt 25.90 54.80 69.00 88.80 5 28.06 46.09 26.30 57.00 70.10 90.00 4 25.15 47.19
BERT-large HCQ_MSRVTT_1kA_bert-large.json HCQ_MSRVTT_1kA_bert-large.txt 27.40 57.70 70.70 89.60 4 27.09 48.17 26.20 59.00 71.80 89.50 4 25.47 48.06
DistilBERT-base HCQ_MSRVTT_1kA_distilbert-base.json HCQ_MSRVTT_1kA_distilbert-base.txt 25.40 54.20 67.30 89.80 4 27.00 45.25 26.30 56.40 69.00 90.10 4 24.22 46.78
RoBERTa-base HCQ_MSRVTT_1kA_roberta-base.json HCQ_MSRVTT_1kA_roberta-base.txt 25.50 54.70 67.80 89.20 5 27.04 45.56 24.50 55.00 69.00 90.20 4 23.80 45.30
RoBERTa-large HCQ_MSRVTT_1kA_roberta-large.json HCQ_MSRVTT_1kA_roberta-large.txt 28.00 55.40 68.50 88.10 4 30.67 47.36 27.00 59.00 68.40 88.50 4 27.41 47.76
XLNet-base HCQ_MSRVTT_1kA_xlnet-base.json HCQ_MSRVTT_1kA_xlnet-base.txt 25.80 56.20 68.70 87.50 5 28.35 46.36 24.60 55.50 69.00 88.40 4 25.59 45.50
XLNet-large HCQ_MSRVTT_1kA_xlnet-large.json HCQ_MSRVTT_1kA_xlnet-large.txt 25.00 53.00 66.60 88.20 5 27.59 44.52 25.30 54.50 68.00 89.10 4 23.69 45.43

If you are doing experiments on a platform with enough RAM and want to accelerate the training, you can load the whole dataset in RAM by the following modification:

# WWW22-HCQ/base/base_dataset.py:L170
               load_in_ram=True, # change from 'False' to 'True'

3.2 Evaluation from checkpoint

We can evaluate the model from the checkpoint without re-training. The evaluation command:

python -m train --config configs/HCQ_MSRVTT_1kA.json --only_eval --load_checkpoint HCQ_MSRVTT_1kA.pth

We provide the checkpoint of HCQ_MSRVTT_1kA.json as an example, you can download this file (~1.6G) from the Google Drive and put it in the working directory (WWW22-HCQ/).

3.3 Evaluation for post-compression methods

Take the evaluation on MSRVTT dataset ("1k-A" split) as an example. First, we need to train an HCT.

# working directory: WWW22-HCQ/
python -m train --config configs/HCT_MSRVTT_1kA.json

Then, run the get_embed.py and pass the path of the HCT checkpoint to the script:

python -m get_embed configs/HCT_MSRVTT_1kA.json --only_eval --load_checkpoint HCT_MSRVTT_1kA/trained_model.pth

After that, we will get the embedding file embeddings.h5 under WWW22-HCQ/exps/HCT_MSRVTT_1kA/. Run the compress_embed.py and get the results:

# compress embeddings with LSH
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type LSH
# compress embeddings with PQ
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type PQ
# compress embeddings with OPQ
python -m compress_embed --path ./exps/HCT_MSRVTT_1kA/embeddings.h5 --type OPQ

3. References

If you find this code useful or use the toolkit in your work, please consider citing:

@inproceedings{wang22hcq,
  author={Wang, Jinpeng and Chen, Bin and Liao, Dongliang and Zeng, Ziyun and Li, Gongfu and Shu-Tao, Xia and Xu, Jin},
  title={Hybrid Contrastive Quantization for Efficient Cross-View Video Retrieval},
  booktitle={Proceedings of the Web Conference 2022},
  doi={10.1145/3485447.3512022}
}

4. Acknowledgements

Our code is based on the implementation of nanopq, Multi-Modal Transformer, Collaborative Experts, Transformers and Mixture of Embedding Experts.

5. Contact

If you have any question, you can raise an issue or email Jinpeng Wang ([email protected]). We will reply you soon.

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
You Only Look Once for Panopitic Driving Perception

You Only 👀 Once for Panoptic 🚗 Perception You Only Look at Once for Panoptic driving Perception by Dong Wu, Manwen Liao, Weitian Zhang, Xinggang Wan

Hust Visual Learning Team 1.4k Jan 04, 2023
Modified prey-predator system - Modified prey–predator model describes the rate of change for each species by adding coupling terms.

Modified prey-predator system We aim to study the behaviors of the modified prey–predator model and establish the effects of several parameters that p

Seoyoung Oh 1 Jan 02, 2022
Implementation of Gans

GAN Generative Adverserial Networks are an approach to generative data modelling using Deep learning methods. I have currently implemented : DCGAN on

Sibam Parida 5 Sep 07, 2021
This repository builds a basic vision transformer from scratch so that one beginner can understand the theory of vision transformer.

vision-transformer-from-scratch This repository includes several kinds of vision transformers from scratch so that one beginner can understand the the

1 Dec 24, 2021
SPRING is a seq2seq model for Text-to-AMR and AMR-to-Text (AAAI2021).

SPRING This is the repo for SPRING (Symmetric ParsIng aNd Generation), a novel approach to semantic parsing and generation, presented at AAAI 2021. Wi

Sapienza NLP group 98 Dec 21, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression problems

Doctoral dissertation of Zheng Zhao This thesis is mainly concerned with state-space methods for a class of deep Gaussian process (DGP) regression pro

Zheng Zhao 21 Nov 14, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection .

GCoNet The official repo of the CVPR 2021 paper Group Collaborative Learning for Co-Salient Object Detection . Trained model Download final_gconet.pth

Qi Fan 46 Nov 17, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022
LBK 35 Dec 26, 2022