A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Related tags

Deep Learningapex
Overview

Introduction

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Full API Documentation: https://nvidia.github.io/apex

GTC 2019 and Pytorch DevCon 2019 Slides

Contents

1. Amp: Automatic Mixed Precision

apex.amp is a tool to enable mixed precision training by changing only 3 lines of your script. Users can easily experiment with different pure and mixed precision training modes by supplying different flags to amp.initialize.

Webinar introducing Amp (The flag cast_batchnorm has been renamed to keep_batchnorm_fp32).

API Documentation

Comprehensive Imagenet example

DCGAN example coming soon...

Moving to the new Amp API (for users of the deprecated "Amp" and "FP16_Optimizer" APIs)

2. Distributed Training

apex.parallel.DistributedDataParallel is a module wrapper, similar to torch.nn.parallel.DistributedDataParallel. It enables convenient multiprocess distributed training, optimized for NVIDIA's NCCL communication library.

API Documentation

Python Source

Example/Walkthrough

The Imagenet example shows use of apex.parallel.DistributedDataParallel along with apex.amp.

Synchronized Batch Normalization

apex.parallel.SyncBatchNorm extends torch.nn.modules.batchnorm._BatchNorm to support synchronized BN. It allreduces stats across processes during multiprocess (DistributedDataParallel) training. Synchronous BN has been used in cases where only a small local minibatch can fit on each GPU. Allreduced stats increase the effective batch size for the BN layer to the global batch size across all processes (which, technically, is the correct formulation). Synchronous BN has been observed to improve converged accuracy in some of our research models.

Checkpointing

To properly save and load your amp training, we introduce the amp.state_dict(), which contains all loss_scalers and their corresponding unskipped steps, as well as amp.load_state_dict() to restore these attributes.

In order to get bitwise accuracy, we recommend the following workflow:

# Initialization
opt_level = 'O1'
model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)

# Train your model
...
with amp.scale_loss(loss, optimizer) as scaled_loss:
    scaled_loss.backward()
...

# Save checkpoint
checkpoint = {
    'model': model.state_dict(),
    'optimizer': optimizer.state_dict(),
    'amp': amp.state_dict()
}
torch.save(checkpoint, 'amp_checkpoint.pt')
...

# Restore
model = ...
optimizer = ...
checkpoint = torch.load('amp_checkpoint.pt')

model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level)
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
amp.load_state_dict(checkpoint['amp'])

# Continue training
...

Note that we recommend restoring the model using the same opt_level. Also note that we recommend calling the load_state_dict methods after amp.initialize.

Requirements

Python 3

CUDA 9 or newer

PyTorch 0.4 or newer. The CUDA and C++ extensions require pytorch 1.0 or newer.

We recommend the latest stable release, obtainable from https://pytorch.org/. We also test against the latest master branch, obtainable from https://github.com/pytorch/pytorch.

It's often convenient to use Apex in Docker containers. Compatible options include:

  • NVIDIA Pytorch containers from NGC, which come with Apex preinstalled. To use the latest Amp API, you may need to pip uninstall apex then reinstall Apex using the Quick Start commands below.
  • official Pytorch -devel Dockerfiles, e.g. docker pull pytorch/pytorch:nightly-devel-cuda10.0-cudnn7, in which you can install Apex using the Quick Start commands.

See the Docker example folder for details.

Quick Start

Linux

For performance and full functionality, we recommend installing Apex with CUDA and C++ extensions via

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Apex also supports a Python-only build (required with Pytorch 0.4) via

pip install -v --disable-pip-version-check --no-cache-dir ./

A Python-only build omits:

  • Fused kernels required to use apex.optimizers.FusedAdam.
  • Fused kernels required to use apex.normalization.FusedLayerNorm.
  • Fused kernels that improve the performance and numerical stability of apex.parallel.SyncBatchNorm.
  • Fused kernels that improve the performance of apex.parallel.DistributedDataParallel and apex.amp. DistributedDataParallel, amp, and SyncBatchNorm will still be usable, but they may be slower.

Pyprof support has been moved to its own dedicated repository. The codebase is deprecated in Apex and will be removed soon.

Windows support

Windows support is experimental, and Linux is recommended. pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" . may work if you were able to build Pytorch from source on your system. pip install -v --no-cache-dir . (without CUDA/C++ extensions) is more likely to work. If you installed Pytorch in a Conda environment, make sure to install Apex in that same environment.

Owner
NVIDIA Corporation
NVIDIA Corporation
Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

cim-misspelling Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022. This model (

Juyong Kim 11 Dec 19, 2022
A short code in python, Enchpyter, is able to encrypt and decrypt words as you determine, of course

Enchpyter Enchpyter is a program do encrypt and decrypt any word you want (just letters). You enter how many letters jumps and write the word, so, the

João Assalim 2 Oct 10, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
Navigating StyleGAN2 w latent space using CLIP

Navigating StyleGAN2 w latent space using CLIP an attempt to build sth with the official SG2-ADA Pytorch impl kinda inspired by Generating Images from

Mike K. 55 Dec 06, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
A simple, fully convolutional model for real-time instance segmentation.

You Only Look At CoefficienTs ██╗ ██╗ ██████╗ ██╗ █████╗ ██████╗████████╗ ╚██╗ ██╔╝██╔═══██╗██║ ██╔══██╗██╔════╝╚══██╔══╝ ╚██

Daniel Bolya 4.6k Dec 30, 2022
The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

xmy 10 Aug 03, 2022
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
The Fundamental Clustering Problems Suite (FCPS) summaries 54 state-of-the-art clustering algorithms, common cluster challenges and estimations of the number of clusters as well as the testing for cluster tendency.

FCPS Fundamental Clustering Problems Suite The package provides over sixty state-of-the-art clustering algorithms for unsupervised machine learning pu

9 Nov 27, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
"Neural Turing Machine" in Tensorflow

Neural Turing Machine in Tensorflow Tensorflow implementation of Neural Turing Machine. This implementation uses an LSTM controller. NTM models with m

Taehoon Kim 1k Dec 06, 2022