Pyeventbus: a publish/subscribe event bus

Overview

pyeventbus

https://travis-ci.org/n89nanda/pyeventbus.svg?branch=master

pyeventbus is a publish/subscribe event bus for Python 2.7.

  • simplifies the communication between python classes
  • decouples event senders and receivers
  • performs well threads, greenlets, queues and concurrent processes
  • avoids complex and error-prone dependencies and life cycle issues
  • makes code simpler
  • has advanced features like delivery threads, workers and spawning different processes, etc.
  • is tiny (3KB archive)

pyeventbus in 3 steps:

  1. Define events:

    class MessageEvent:
        # Additional fields and methods if needed
        def __init__(self):
            pass
    
  2. Prepare subscribers: Declare and annotate your subscribing method, optionally specify a thread mode:

    from pyeventbus import *
    
    @subscribe(onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

    Register your subscriber. For example, if you want to register a class in Python:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
    # then during initilization
    
    myclass = MyClass()
    myclass.register(myclass)
    
  3. Post events:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
        def postingAnEvent(self):
            PyBus.Instance().post(MessageEvent())
    
     myclass = MyClass()
     myclass.register(myclass)
     myclass.postingAnEvent()
    

Modes: pyeventbus can run the subscribing methods in 5 different modes

  1. POSTING:

    Runs the method in the same thread as posted. For example, if an event is posted from main thread, the subscribing method also runs in the main thread. If an event is posted in a seperate thread, the subscribing method runs in the same seperate method
    
    This is the default mode, if no mode has been provided::
    
    @subscribe(threadMode = Mode.POSTING, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  2. PARALLEL:

    Runs the method in a seperate python thread::
    
    @subscribe(threadMode = Mode.PARALLEL, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  3. GREENLET:

    Runs the method in a greenlet using gevent library::
    
    @subscribe(threadMode = Mode.GREENLET, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  4. BACKGROUND:

    Adds the subscribing methods to a queue which is executed by workers::
    
    @subscribe(threadMode = Mode.BACKGROUND, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  1. CONCURRENT:

    Runs the method in a seperate python process::
    
    @subscribe(threadMode = Mode.CONCURRENT, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

Adding pyeventbus to your project:

pip install pyeventbus

Example:

git clone https://github.com/n89nanda/pyeventbus.git

cd pyeventbus

virtualenv venv

source venv/bin/activate

pip install pyeventbus

python example.py

Benchmarks and Performance:

Refer /pyeventbus/tests/benchmarks.txt for performance benchmarks on CPU, I/O and networks heavy tasks.

Run /pyeventbus/tests/test.sh to generate the same benchmarks.

Performance comparison between all the modes with Python and Cython

alternate text

Inspiration

Inspired by Eventbus from greenrobot: https://github.com/greenrobot/EventBus
You might also like...
Code for the paper
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

CVPRW 2021: How to calibrate your event camera
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Comments
  • Same method name for multiple subscribers bug

    Same method name for multiple subscribers bug

    Please see the code below. To summarize:

    • Define one event
    • Define two subscriber listening for the event above. Each subscriber has a listener method with the name on_event
    • Each of the subscriber classes above defines an instance field, but with unique name (self.something in the first class, self.something2 in the second class)
    • Define another class that posts an event

    Run this scenario and get the error below:

    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 16, in on_event
        print (self.something)
    AttributeError: Subscriber2 instance has no attribute 'something'
    
    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 26, in on_event
        print (self.something_else)
    AttributeError: Subscriber1 instance has no attribute 'something_else'
    
    

    It complains about the variable in class two not having the attribute in the first class and the other way around.

    If I change on of the on_event to something else like on_event2 then the issue is gone.

    from pyeventbus import *
    
    
    class SomeEvent:
        def __init__(self):
            pass
    
    
    class Subscriber1:
        def __init__(self):
            self.something = 'First subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something)
    
    
    class Subscriber2:
        def __init__(self):
            self.something_else = 'Second subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something_else)
    
    
    class PyEventBusBug:
    
        def __init__(self):
            Subscriber1()
            Subscriber2()
            PyBus.Instance().post(SomeEvent())
    
    
    if __name__ == "__main__":
        PyEventBusBug()
    
    
    bug 
    opened by ddanny 0
  • Doesn't even start on Windows because 2000 threads is apparently too much

    Doesn't even start on Windows because 2000 threads is apparently too much

      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 116, in subscribe
        bus = PyBus.Instance()
      File "C:\Python27\lib\site-packages\pyeventbus\Singleton.py", line 30, in Instance
        self._instance = self._decorated()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in __init__
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in <lambda>
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 30, in startWorkers
        worker.start()
      File "C:\Python27\lib\threading.py", line 736, in start
        _start_new_thread(self.__bootstrap, ())
    thread.error: can't start new thread
    

    See also: https://stackoverflow.com/a/1835043/2583080

    bug 
    opened by PawelTroka 4
Releases(0.2)
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Official implementation of FCL-taco2: Fast, Controllable and Lightweight version of Tacotron2 @ ICASSP 2021

FCL-Taco2: Towards Fast, Controllable and Lightweight Text-to-Speech synthesis (ICASSP 2021) Paper | Demo Block diagram of FCL-taco2, where the decode

Disong Wang 39 Sep 28, 2022
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

Sornsiri.P 7 Dec 22, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Repository for code and dataset for our EMNLP 2021 paper - “So You Think You’re Funny?”: Rating the Humour Quotient in Standup Comedy.

AI-OpenMic Dataset The dataset is available for download via the follwing link. Repository for code and dataset for our EMNLP 2021 paper - “So You Thi

6 Oct 26, 2022
A program that uses computer vision to detect hand gestures, used for controlling movie players.

HandGestureDetection This program uses a Haar Cascade algorithm to detect the presence of your hand, and then passes it on to a self-created and self-

2 Nov 22, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Torch and Numpy.

Visdom A flexible tool for creating, organizing, and sharing visualizations of live, rich data. Supports Python. Overview Concepts Setup Usage API To

FOSSASIA 9.4k Jan 07, 2023
This project deploys a yolo fastest model in the form of tflite on raspberry 3b+. The model is from another repository of mine called -Trash-Classification-Car

Deploy-yolo-fastest-tflite-on-raspberry 觉得有用的话可以顺手点个star嗷 这个项目将垃圾分类小车中的tflite模型移植到了树莓派3b+上面。 该项目主要是为了记录在树莓派部署yolo fastest tflite的流程 (之后有时间会尝试用C++部署来提升

7 Aug 16, 2022
DROPO: Sim-to-Real Transfer with Offline Domain Randomization

DROPO: Sim-to-Real Transfer with Offline Domain Randomization Gabriele Tiboni, Karol Arndt, Ville Kyrki. This repository contains the code for the pap

Gabriele Tiboni 8 Dec 19, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
SciPy fixes and extensions

scipyx SciPy is large library used everywhere in scientific computing. That's why breaking backwards-compatibility comes as a significant cost and is

Nico Schlömer 16 Jul 17, 2022
The mini-AlphaStar (mini-AS, or mAS) - mini-scale version (non-official) of the AlphaStar (AS)

A mini-scale reproduction code of the AlphaStar program. Note: the original AlphaStar is the AI proposed by DeepMind to play StarCraft II.

Ruo-Ze Liu 216 Jan 04, 2023
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

Vision Transformer with Progressive Sampling This is the official implementation of the paper Vision Transformer with Progressive Sampling, ICCV 2021.

yuexy 123 Jan 01, 2023
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022