Human Dynamics from Monocular Video with Dynamic Camera Movements

Overview

Human Dynamics from Monocular Video with Dynamic Camera Movements

Ri Yu, Hwangpil Park and Jehee Lee

Seoul National University

ACM Transactions on Graphics, Volume 40, Number 6, Article 208. (SIGGRAPH Asia 2021)

Teaser Image

Abstract

We propose a new method that reconstructs 3D human motion from in-the wild video by making full use of prior knowledge on the laws of physics. Previous studies focus on reconstructing joint angles and positions in the body local coordinate frame. Body translations and rotations in the global reference frame are partially reconstructed only when the video has a static camera view. We are interested in overcoming this static view limitation to deal with dynamic view videos. The camera may pan, tilt, and zoom to track the moving subject. Since we do not assume any limitations on camera movements, body translations and rotations from the video do not correspond to absolute positions in the reference frame. The key technical challenge is inferring body translations and rotations from a sequence of 3D full-body poses, assuming the absence of root motion. This inference is possible because human motion obeys the law of physics. Our reconstruction algorithm produces a control policy that simulates 3D human motion imitating the one in the video. Our algorithm is particularly useful for reconstructing highly dynamic movements, such as sports, dance, gymnastics, and parkour actions.

Requirements

  • Ubuntu (tested on 18.04 LTS)

  • Python 3 (tested on version 3.6+)

  • Dart (modified version, see below)

  • Fltk 1.3.4.1

Installation

Dart

sudo apt install libeigen3-dev libassimp-dev libccd-dev libfcl-dev libboost-regex-dev libboost-system-dev libopenscenegraph-dev libnlopt-dev coinor-libipopt-dev libbullet-dev libode-dev liboctomap-dev libflann-dev libtinyxml2-dev liburdfdom-dev doxygen libxi-dev libxmu-dev liblz4-dev
git clone https://github.com/hpgit/dart-ltspd.git
cd dart-ltspd
mkdir build
cd build
cmake ..
make -j4
sudo make install

Pydart

sudo apt install swig

after virtual environment(venv) activates,

source venv/bin/activate
git clone https://github.com/hpgit/pydart2.git
cd pydart2
pip install pyopengl==3.1.0 pyopengl-accelerate==3.1.0
python setup.py build
python setup.py install

Fltk and Pyfltk

sudo apt install libfltk1.3-dev

Download pyfltk

cd ~/Downloads
tar xzf pyFltk-1.3.4.1_py3.tar
cd pyFltk-1.3.4.1_py3
python setup.py build
python setup.py install

misc

pip install pillow cvxopt scipy
cd PyCommon/modules/GUI
sudo apt install libgle3-dev

Run examples

source venv/bin/activate
export PYTHONPATH=$PWD
cd control/parkour1
python3 render_parkour1.py

Bibtex

@article{Yu:2021:MovingCam,
    author = {Yu, Ri and Park, Hwangpil and Lee, Jehee},
    title = {Human Dynamics from Monocular Video with Dynamic Camera Movements},
    journal = {ACM Trans. Graph.},
    volume = {40},
    number = {6},
    year = {2021},
    articleno = {208}
}
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
A minimalist implementation of score-based diffusion model

sdeflow-light This is a minimalist codebase for training score-based diffusion models (supporting MNIST and CIFAR-10) used in the following paper "A V

Chin-Wei Huang 89 Dec 20, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Restricted Boltzmann Machines in Python.

How to Use First, initialize an RBM with the desired number of visible and hidden units. rbm = RBM(num_visible = 6, num_hidden = 2) Next, train the m

Edwin Chen 928 Dec 30, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

Samantha Van Seters 1 Jan 10, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022