Gray Zone Assessment

Overview

Gray Zone Assessment

Get started

  1. Clone github repository
git clone https://github.com/andreanne-lemay/gray_zone_assessment.git
  1. Build docker image
docker build -t gray_zone docker/
  1. Run docker container
docker run -it -v tunnel/to/local/folder:/tunnel --gpus 0 gray_zone:latest bash
  1. Run the following command at the root of the repository to install the modules
cd path/to/gray_zone_assessment
pip install -e .
  1. Train model
python run_model.py -o <outpath/path> -p <resources/training_configs/config.json> -d <image/data/path> -c <path/csv/file.csv>

For more information on the different flags: python run_model.py --help

Configuration file (flag -p or --param-path)

The configuration file is a json file containing the main training parameters.
Some json file examples are located in gray_zone/resources/training_configs/

Required configuration parameters

Parameter Description
architecture Architecture id contained in Densenet or Resnet family. Choice between: 'densenet121', 'densenet169', 'densenet201', 'densenet264', 'resnet18', 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d', 'wide_resnet50_2', 'wide_resnet101_2'
model_type Choice between "classification", "ordinal", "regression".
loss Loss function id. Choice between 'ce' (Cross entropy), 'mse' (Mean square error), 'l1' (L1), 'bce' (Binary cross entropy), 'coral' (Ordinal loss), 'qwk' (Quadratic weighted kappa).
batch_size Batch size (int).
lr Learning rate (float).
n_epochs Number of training epochs (int).
device Device id (e.g., 'cuda:0', 'cpu') (str).
val_metric Choice between "auc" (average ROC AUC over all classes), "val_loss" (minimum validation loss), "kappa" (linear Cohen's kappa), default "accuracy".
dropout_rate Dropout rate (Necessary for Monte Carlo model's). A dropout rate of 0 will disable dropout. (float).
is_weighted_loss Indicates if the loss is weighted by the number of cases by class (bool).
is_weighted_sampling Indicates if the sampling is weighted by the number of cases by class (bool).
seed Random seed (int).
train_frac Fraction of cases used for training if splitting not already done in csv file, or else the parameter is ignored (float).
test_frac Fraction of cases used for testing if splitting not already done in csv file, or else the parameter is ignored (float).
train_transforms / val_transforms monai training / validation transforms with parameters. Validation transforms are also used during testing (see https://docs.monai.io/en/latest/transforms.html for transform list)

csv file (flag -c or --csv-path)

The provided csv file contains the filename of the images used for training, GT labels (int from 0-n_class), patient ID (str) and split column (containing 'train', 'val' or 'test') (optional).

Example of csv file with the default column names. If the column names are different from the default values, the flags --label-colname, --image-colname, --patient-colname, and --split-colname can be used to indicate the custom column names. There can be more columns in the csv file. All this metadata will be included in predictions.csv and split_df.csv.

image label patient dataset
patient1_000.png 0 patient1 train
patient1_001.png 0 patient1 train
patient2_000.png 2 patient2 val
patient2_001.png 2 patient2 val
patient2_002.png 2 patient2 val
patient3_000.png 1 patient3 test
patient3_001.png 1 patient3 test

Output directory (flag -o or --output-path)


└── output directory                # Output directory specified with `-o`  
    ├──   checkpoints               # All models (one .pth per epoch)  
    |     ├──  checkpoint0.pth   
    |     ├──  ...  
    |     └──  checkpointn.pth   
    ├──   best_metric_model.pth     # Best model based on validation metric  
    ├──   params.json               # Parameters used for training (configuration file)  
    ├──   predictions.csv           # Test results  
    ├──   split_df.csv              # csv file containing image filenames, labels, split and patient id  
    └──   train_record.json         # Record of CLI used to train and other info for reproducibility  
Multiview 3D object detection on MultiviewC dataset through moft3d.

Multiview Orthographic Feature Transformation for 3D Object Detection Multiview 3D object detection on MultiviewC dataset through moft3d. Introduction

Jiahao Ma 20 Dec 21, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Topic Modelling for Humans

gensim – Topic Modelling in Python Gensim is a Python library for topic modelling, document indexing and similarity retrieval with large corpora. Targ

RARE Technologies 13.8k Jan 03, 2023
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
A Pytorch loader for MVTecAD dataset.

MVTecAD A Pytorch loader for MVTecAD dataset. It strictly follows the code style of common Pytorch datasets, such as torchvision.datasets.CIFAR10. The

Jiyuan 1 Dec 27, 2021
An efficient implementation of GPNN

Efficient-GPNN An efficient implementation of GPNN as depicted in "Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Mo

7 Apr 16, 2022
CONetV2: Efficient Auto-Channel Size Optimization for CNNs

CONetV2: Efficient Auto-Channel Size Optimization for CNNs Exciting News! CONetV2: Efficient Auto-Channel Size Optimization for CNNs has been accepted

Mahdi S. Hosseini 3 Dec 13, 2021
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Biomedical Computer Vision @ Uniandes 52 Dec 19, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Make your master artistic punk avatar through machine learning world famous paintings.

Master-art-punk Make your master artistic punk avatar through machine learning world famous paintings. 通过机器学习世界名画制作属于你的大师级艺术朋克头像 Nowadays, NFT is beco

Philipjhc 53 Dec 27, 2022
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
GluonMM is a library of transformer models for computer vision and multi-modality research

GluonMM is a library of transformer models for computer vision and multi-modality research. It contains reference implementations of widely adopted baseline models and also research work from Amazon

42 Dec 02, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022