A PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral)

Related tags

Deep LearningPNG
Overview

❇️   ❇️     Please visit our Project Page to learn more about Panoptic Narrative Grounding.    ❇️   ❇️

Panoptic Narrative Grounding

This repository provides a PyTorch implementation of the baseline method in Panoptic Narrative Grounding (ICCV 2021 Oral). Panoptic Narrative Grounding is a spatially fine and general formulation of the natural language visual grounding problem. We establish an experimental framework for the study of this new task, including new ground truth and metrics, and we propose a strong baseline method to serve as stepping stone for future work. We exploit the intrinsic semantic richness in an image by including panoptic categories, and we approach visual grounding at a fine-grained level by using segmentations. In terms of ground truth, we propose an algorithm to automatically transfer Localized Narratives annotations to specific regions in the panoptic segmentations of the MS COCO dataset. The proposed baseline achieves a performance of 55.4 absolute Average Recall points. This result is a suitable foundation to push the envelope further in the development of methods for Panoptic Narrative Grounding.

Paper

Panoptic Narrative Grounding,
Cristina González1, Nicolás Ayobi1, Isabela Hernández1, José Hernández 1, Jordi Pont-Tuset2, Pablo Arbeláez1
ICCV 2021 Oral.

1 Center for Research and Formation in Artificial Intelligence (CINFONIA) , Universidad de Los Andes.
2 Google Research, Switzerland.

Installation

Requirements

  • Python
  • Numpy
  • Pytorch 1.7.1
  • Tqdm 4.56.0
  • Scipy 1.5.3

Cloning the repository

$ git clone [email protected]:BCV-Uniandes/PNG.git
$ cd PNG

Dataset Preparation

Panoptic Marrative Grounding Benchmark

  1. Download the 2017 MSCOCO Dataset from its official webpage. You will need the train and validation splits' images1 and panoptic segmentations annotations.

  2. Download the Panoptic Narrative Grounding Benchmark and pre-computed features from our project webpage with the following folders structure:

panoptic_narrative_grounding
|_ images
|  |_ train2017
|  |_ val2017
|_ features
|  |_ train2017
|  |  |_ mask_features
|  |  |_ sem_seg_features
|  |  |_ panoptic_seg_predictions
|  |_ val2017
|     |_ mask_features
|     |_ sem_seg_features
|     |_ panoptic_seg_predictions
|_ annotations
   |_ png_coco_train2017.json
   |_ png_coco_val2017.json
   |_ panoptic_segmentation
      |_ train2017
      |_ val2017

Train setup:

Modify the routes in train_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir

Test setup:

Modify the routes in test_net.sh according to your local paths.

python main --init_method "tcp://localhost:8080" NUM_GPUS 1 DATA.PATH_TO_DATA_DIR path_to_your_data_dir DATA.PATH_TO_FEATURES_DIR path_to_your_features_dir OUTPUT_DIR output_dir TRAIN.ENABLE "False"

Pretrained model

To reproduce all our results as reported bellow, you can use our pretrained model and our source code.

Method things + stuff things stuff
Oracle 64.4 67.3 60.4
Ours 55.4 56.2 54.3
MCN - 48.2 -
Method singulars + plurals singulars plurals
Oracle 64.4 64.8 60.7
Ours 55.4 56.2 48.8

Citation

If you find Panoptic Narrative Grounding useful in your research, please use the following BibTeX entry for citation:

@inproceedings{gonzalez2021png,
  title={Panoptic Narrative Grounding},
  author={Gonz{\'a}lez, Cristina and Ayobi, Nicol{'\a}s and Hern{\'a}ndez, Isabela and Hern{\'a}ndez, Jose and Pont-Tuset, Jordi and Arbel{\'a}ez, Pablo},
  booktitle={ICCV},
  year={2021}
}
Owner
Biomedical Computer Vision @ Uniandes
Our field of research is computer vision, the area of artificial intelligence seeking automated understanding of visual information
Biomedical Computer Vision @ Uniandes
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Project for tracking occupancy in Tel-Aviv parking lots.

Ahuzat Dibuk - Tracking occupancy in Tel-Aviv parking lots main.py This module was set-up to be executed on Google Cloud Platform. I run it every 15 m

Geva Kipper 35 Nov 22, 2022
Constrained Language Models Yield Few-Shot Semantic Parsers

Constrained Language Models Yield Few-Shot Semantic Parsers This repository contains tools and instructions for reproducing the experiments in the pap

Microsoft 43 Nov 23, 2022
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
An API-first distributed deployment system of deep learning models using timeseries data to analyze and predict systems behaviour

Gordo Building thousands of models with timeseries data to monitor systems. Table of content About Examples Install Uninstall Developer manual How to

Equinor 26 Dec 27, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning (ICML 2017)

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
OrienMask: Real-time Instance Segmentation with Discriminative Orientation Maps

OrienMask This repository implements the framework OrienMask for real-time instance segmentation. It achieves 34.8 mask AP on COCO test-dev at the spe

45 Dec 13, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations"

Few-shot-NLEs These are the materials for the paper "Few-Shot Out-of-Domain Transfer Learning of Natural Language Explanations". You can find the smal

Yordan Yordanov 0 Oct 21, 2022