Morphable Detector for Object Detection on Demand

Overview

Morphable Detector for Object Detection on Demand

(ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand.

teaser

If our project is helpful for your research, please consider citing:

@inproceedings{zhaomorph,
  author  = {Xiangyun Zhao, Xu Zou, Ying Wu},
  title   = {Morphable Detector for Object Detection on Demand},
  booktitle = {ICCV},
  Year  = {2021}
}

Install

First, install PyTorch and torchvision. We have tested on version of 1.8.0 with CUDA 11.0, but the other versions should also be working.

Our code is based on maskrcnn-benchmark, so you should install all dependencies.

Data Preparation

Download large scale few detection dataset here and covert the data into COCO dataset format. The file structure should look like:

  $ tree data
  dataset
  ├──fsod
      ├── annototation
      │   
      ├── images

Training (EM-like approach)

We follow FSOD Paper to pretrain the model using COCO dataset for 200,000 iterations. So, you can download the COCO pretrain model here, and use it to initilize the network.

We first initialize the prototypes using semantic vectors, then train the network run:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/train_sem_net.py \
--config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  OUTPUT_DIR "YOUR_OUTPUT_PATH" \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 270000 \
SOLVER.STEPS "(50000,70000)" SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002  

Then, to update the prototypes, we first extract the features for the training samples by running:

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the mean vectors and update the prototypes, run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE
python update_prototype.py MEAN_FEATURE_FILE

To train the network using the updated prototypes, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \
SEM_DIR "PATH_WHERE_YOU_SAVE_THE_PROTOTYPES" VISUAL True OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \ 
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 SOLVER.IMS_PER_BATCH 4 \
SOLVER.MAX_ITER 70000 SOLVER.STEPS "(50000,80000)" \
SOLVER.CHECKPOINT_PERIOD 10000 \
SOLVER.BASE_LR 0.002 

Tests

After the model is trained, we randomly sample 5 samples for each novel category from the test data and use the mean feature vectors for the 5 samples as the prototype for that categpry. The results with different sample selection may vary a bit. To reproduce the results, we provide the features we extracted from our final model. But you can still extract your own features from your trained model.

To extract the features for test data, run

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS \
./tools/train_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml"  \ 
FEATURE_DIR "features" OUTPUT_DIR "WHERE_YOU_SAVE_YOUR_MODEL" \
FEATURE_SIZE 200 SEM_DIR "visual_sem.txt" GET_FEATURE True \
MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  2000 \
SOLVER.IMS_PER_BATCH 4 SOLVER.MAX_ITER 80000 \
SOLVER.CHECKPOINT_PERIOD 10000000

To compute the prototype for each class (online morphing), run

cd features

python mean_features.py FEATURE_FILE MEAN_FEATURE_FILE

Then run test,

export NGPUS=2
RND_PORT=`shuf -i 4000-7999 -n 1`

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --master_port $RND_PORT --nproc_per_node=$NGPUS ./tools/test_sem_net.py --config-file "./configs/fsod/e2e_faster_rcnn_R_50_FPN_1x.yaml" SEM_DIR WHERE_YOU_SAVE_THE_PROTOTYPES VISUAL True OUTPUT_DIR WHERE_YOU_SAVE_THE_MODEL MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN 2000 FEATURE_SIZE 200 MODEL.ROI_BOX_HEAD.NUM_CLASSES 201 TEST_SCALE 0.7

Models

Our pre-trained ResNet-50 models can be downloaded as following:

name iterations AP AP^{0.5} model Mean Features
MD 70,000 22.2 37.9 download download
name iterations AP AP^{0.5} Mean Features
MD 1-shot 70,000 19.6 33.3 download
MD 2-shot 70,000 20.9 35.7 download
MD 5-shot 70,000 22.2 37.9 download
Owner
Ph.D. student at EECS department, Northwestern University
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

107 Dec 02, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Convolutional Neural Networks

Darknet Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation. D

Joseph Redmon 23.7k Jan 05, 2023
PyTorch implementation of "A Simple Baseline for Low-Budget Active Learning".

A Simple Baseline for Low-Budget Active Learning This repository is the implementation of A Simple Baseline for Low-Budget Active Learning. In this pa

10 Nov 14, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
A framework that allows people to write their own Rocket League bots.

YOU PROBABLY SHOULDN'T PULL THIS REPO Bot Makers Read This! If you just want to make a bot, you don't need to be here. Instead, start with one of thes

543 Dec 20, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
pytorch implementation for PointNet

PointNet.pytorch This repo is implementation for PointNet in pytorch. The model is in pointnet/model.py. It is teste

Fei Xia 1.7k Dec 30, 2022
ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

ESGD-M - A stochastic non-convex second order optimizer, suitable for training deep learning models, for PyTorch

Katherine Crowson 53 Dec 29, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022