TrTr: Visual Tracking with Transformer

Related tags

Deep LearningTrTr
Overview

TrTr: Visual Tracking with Transformer

We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on several benchmarks and our method performs favorably against state-of-the-art algorithms.

Network architecture of TrTr for visual tracking

Installation

Install dependencies

$ ./install.sh ~/anaconda3 trtr 

note1: suppose you have the anaconda installation path under ~/anaconda3.

note2: please select a proper cuda-toolkit version to install Pytorch from conda, the default is 10.1. However, for RTX3090, please select 11.0. Then the above installation command would be $ ./install.sh ~/anaconda3 trtr 11.0.

Activate conda environment

$ conda activate trtr

Quick Start: Using TrTr

Webcam demo

Offline Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth --use_baseline_tracker

Online Model

$ python demo.py --tracker.checkpoint networks/trtr_resnet50.pth

image sequences (png, jpeg)

add option --video_name ${video_dir}

video (mp4 or avi)

add option --video_name ${video_name}

Benchmarks

Download testing datasets

Please read this README.md to prepare the dataset.

Basic usage

Test tracker

$ cd benchmark
$ python test.py --cfg_file ../parameters/experiment/vot2018/offline.yaml
  • --cfg_file: the yaml file containing the hyper-parameter for each datasets. Please check ./benchmark/parameters/experiment for more yaml files
    • online model for VOT2018: python test.py --cfg_file ../parameters/experiment/vot2018/online.yaml
    • online model for OTB: python test.py --cfg_file ../parameters/experiment/otb/online.yaml
  • --result_path: optional parameter to specify a directory to store the tracking result. Default value is results, which generate ./benchmark/results/${dataset_name}
  • --model_name: optional parameter to specify the name of tracker name under the result path. Default value is trtr, which yield a tracker directory of ./benchmark/results/${dataset_name}/trtr
  • --vis: visualize tracking
  • --repetition: repeat number. For example, you should assign --repetition 15 for VOT benchmark following the official evaluation.

Eval tracker

$ cd benchmark
$ python eval.py
  • --dataset: parameter to specify the benchmark. Default value is VOT2018. Please assign other bench name, e.g., OTB, VOT2019, UAV, etc.
  • --tracker_path: parameter to specify the result directory. Default value is ./benchmark/results. This is a parameter related to --result_path parameter in python test.py.
  • --num: parameter to specify the thread number for evaluation multiple tracker results. Default is 1.

(Option) Hyper-parameter search

$ python hp_search.py --tracker.checkpoint ../networks/trtr_resnet50.pth --tracker.search_sizes 280 --separate --repetition 1  --use_baseline_tracker --tracker.model.transformer_mask True

Train

Download training datasets

Please read this README.md to prepare the training dataset.

Download VOT2018 dataset

  1. Please download VOT2018 dataset following [this REAMDE], which is necessary for testing the model during training.
  2. Or you skip this testing process by assigning several parameter, which are explained later.

Test with single GPU

$ python main.py  --cfg_file ./parameters/train/default.yaml --output_dir train

note1: please check ./parameters/train/default.yaml for the parameters for training note2: --output_dir to assign the path to store the training result. The above commmand genearte ./train note3: maybe you have to modify the file limit: ulimit -n 8192. Write in ~/.bashrc maybe better. note4: you can a larger value for --benchmark_start_epoch than for --epochs to skip benchmark test. e.g., --benchmark_start_epoch 21 and --epochs 20

debug mode for quick checking the training process:

$ python main.py  --cfg_file ./parameters/train/default.yaml  --batch_size 16 --dataset.paths ./datasets/yt_bb/dataset/Curation  ./datasets/vid/dataset/Curation/ --dataset.video_frame_ranges 3 100  --dataset.num_uses 100 100  --dataset.eval_num_uses 100 100  --resume networks/trtr_resnet50.pth --benchmark_start_epoch 0 --epochs 10

Multi GPUs

multi GPUs in single machine

$ python -m torch.distributed.launch --nproc_per_node=2 --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train

--nproc_per_node: is the number of GPU to use. The above command means use two GPUs in a machine.

multi GPUs in multi machines

Master Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=0 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml --output_dir train  --benchmark_start_epoch 8
  • --nnodes: number of machine to use. The above command means two machines.
  • --node_rank: the id for each machine. Master should be 0.
  • master_addr: assign the IP address of master machine
  • master_port: open port (e.g., 8080)

Slave1 Machine

$ python -m torch.distributed.launch --nproc_per_node=2 --nnodes=2 --node_rank=1 --master_addr="${MASTER_IP_ADDRESS}" --master_port=${port} --use_env main.py --cfg_file ./parameters/train/default.yaml
Owner
趙 漠居(Zhao, Moju)
Project Lecture in the Uiversity of Tokyo.
趙 漠居(Zhao, Moju)
Sequential GCN for Active Learning

Sequential GCN for Active Learning Please cite if using the code: Link to paper. Requirements: python 3.6+ torch 1.0+ pip libraries: tqdm, sklearn, sc

45 Dec 26, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
PyTorch implementation for the ICLR 2020 paper "Understanding the Limitations of Variational Mutual Information Estimators"

Smoothed Mutual Information ``Lower Bound'' Estimator PyTorch implementation for the ICLR 2020 paper Understanding the Limitations of Variational Mutu

50 Nov 09, 2022
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

ObjProp Introduction This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Insta

Anirudh S Chakravarthy 6 May 03, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

MI-AOD Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection (The PDF is not available tem

Tianning Yuan 269 Dec 21, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
Tools for investing in Python

InvestOps Original repository on GitHub Original author is Magnus Erik Hvass Pedersen Introduction This is a Python package with simple and effective

24 Nov 26, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
Implement some metaheuristics and cost functions

Metaheuristics This repot implement some metaheuristics and cost functions. Metaheuristics JAYA Implement Jaya optimizer without constraints. Cost fun

Adri1G 1 Mar 23, 2022
A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset.

A repository for the updated version of CoinRun used to collect MUGEN, a multimodal video-audio-text dataset. This repo contains scripts to train RL agents to navigate the closed world and collect vi

MUGEN 11 Oct 22, 2022
A repository for interferometer controller code.

dses-interferometer-controller A repository for interferometer controller code, hardware, and simulations. See dses.science for more information on th

Eli Reed 1 Jan 17, 2022
A framework for GPU based high-performance medical image processing and visualization

FAST is an open-source cross-platform framework with the main goal of making it easier to do high-performance processing and visualization of medical images on heterogeneous systems utilizing both mu

Erik Smistad 315 Dec 30, 2022
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022