A study project using the AA-RMVSNet to reconstruct buildings from multiple images

Overview

3d-building-reconstruction

This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images.

Introduction

It is exciting to connect the 2D world with 3D world using Multi-view Stereo(MVS) methods. In this project, we aim to reconstruct several architecture in our campus. Since it's outdoor reconstruction, We chose to use AA-RMVSNet to do this work for its marvelous performance is outdoor datasets after comparing some similar models such as CasMVSNet and D2HC-RMVSNet. The code is retrieved from here with some modification.

Reproduction

Here we summarize the main steps we took when doing this project. You can reproduce our result after these steps.

Installation

First, you need to create a virtual environment and install the necessary dependencies.

conda create -n test python=3.6
conda activate test
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 -c pytorch
conda install -c conda-forge py-opencv plyfile tensorboardx

Other cuda versions can be found here

Struct from Motion

Camera parameters are required to conduct the MVSNet based methods. Please first download the open source software COLMAP.

The workflow is as follow:

  1. Open the COLMAP, then successively click reconstruction-Automatic reconstruction options.
  2. Select your Workspace folder and Image folder.
  3. (Optional) Unclick Dense model to accelerate the reconstruction procedure.
  4. Click Run.
  5. After the completion of reconstruction, you should be able to see the result of sparse reconstruction as well as position of cameras.(Fig )
  6. Click File - Export model as text. There should be a camera.txt in the output folder, each line represent a photo. In case there are photos that remain mismatched, you should dele these photos and rematch. Repeat this process until all the photos are mathced.
  7. Move the there txts to the sparse folder.

img

AA-RMVSNet

To use AA-RMVSNet to reconstruct the building, please follow the steps listed below.

  1. Clone this repository to a local folder.

  2. The custom testing folder should be placed in the root directory of the cloned folder. This folder should have to subfolders names images and sparse. The images folder is meant to place the photos, and the sparse folder should have the three txt files recording the camera's parameters.

  3. Find the file list-dtu-test.txt, and write the name of the folder which you wish to be tested.

  4. Run colmap2mvsnet.py by

    python ./sfm/colmap2mvsnet.py --dense_folder name --interval_scale 1.06 --max_d 512
    

    The parameter dense_folder is compulsory, others being optional. You can also change the default value in the following shells.

  5. When you get the result of the previous step, run the following commands

    sh ./scripts/eval_dtu.sh
    sh ./scripts/fusion_dtu.sh
    
  6. Then you are should see the output .ply files in the outputs_dtu folder.

Here dtu means the data is organized in the format of DTU dataset.

Results

We reconstructed various spot of out campus. The reconstructed point cloud files is available here (Code: nz1e). You can visualize the file with Meshlab or CloudCompare .

The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
Instance-wise Occlusion and Depth Orders in Natural Scenes (CVPR 2022)

Instance-wise Occlusion and Depth Orders in Natural Scenes Official source code. Appears at CVPR 2022 This repository provides a new dataset, named In

27 Dec 27, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
Yolov5-opencv-cpp-python - Example of using ultralytics YOLO V5 with OpenCV 4.5.4, C++ and Python

yolov5-opencv-cpp-python Example of performing inference with ultralytics YOLO V

183 Jan 09, 2023
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
Dense Passage Retriever - is a set of tools and models for open domain Q&A task.

Dense Passage Retrieval Dense Passage Retrieval (DPR) - is a set of tools and models for state-of-the-art open-domain Q&A research. It is based on the

Meta Research 1.1k Jan 03, 2023
A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image.

Minimal Body A very simple baseline to estimate 2D & 3D SMPL-compatible keypoints from a single color image. The model file is only 51.2 MB and runs a

Yuxiao Zhou 49 Dec 05, 2022
This is a Python wrapper for TA-LIB based on Cython instead of SWIG.

TA-Lib This is a Python wrapper for TA-LIB based on Cython instead of SWIG. From the homepage: TA-Lib is widely used by trading software developers re

John Benediktsson 7.3k Jan 03, 2023
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
The official implementation of NeurIPS 2021 paper: Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks

Introduction This repository includes the source code for "Finding Optimal Tangent Points for Reducing Distortions of Hard-label Attacks", which is pu

machen 11 Nov 27, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022