WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

Overview

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet).

  • [New] Note that all the emails about the download permission of WORD will be handled after the paper is accepted, all information will be updated in time in this repo, please don't send them multiple times!!!
  • This repo provides the codebase and dataset of work WORD: Revisiting Organs Segmentation in the Whole Abdominal Region, and the download requirement will be approved after the paper is accepted, stay tuned !!!
  • Now, we are preparing an online evaluation server for the fair and open research if you have experience with it or want to join or provide some support to this project, please contact us !!!
  • Some information about the WORD dataset is presented in the following:
Fig. 1. An example in the WORD dataset.
Fig. 2. Volume distribution or each organ in the WORD dataset.
Fig. 3. User study based on three junior oncologists independently, each of them comes from a different hospital.

DataSet

Please contact Xiangde (luoxd1996 AT gmail DOT com) for the dataset. Two steps are needed to download and access the dataset: 1) using your google email to apply for the download permission; 2) using your affiliation email to get the unzip password. We will get back to you after the paper is accepted. We just handle the real-name email and your email suffix must match your affiliation. The email should contain the following information:

Name/Homepage/Google Scholar: (Tell us who you are.)
Primary Affiliation: (The name of your institution or university, etc.)
Job Title: (E.g., Professor, Associate Professor, Ph.D., etc.)
Affiliation Email: (the password will be sent to this email, we just reply to the email which is the end of "edu".)
How to use: (Only for academic research, not for commercial use or second-development.)

In addition, this work is still ongoing, the WORD dataset will be extended to larger and more diverse (more patients, more organs, and more modalities, more clinical hospitals' data and MR Images will be considered to include future), any suggestion, comment, collaboration, and sponsor are welcome.

Acknowledgment and Statement

  • This dataset belongs to the Healthcare Intelligence Laboratory at University of Electronic Science and Technology of China and is licensed under the GNU General Public License v3.0.
  • This project has been approved by the privacy and ethical review committee. We thank all collaborators for the data collection, annotation, checking, and user study!
  • This project and dataset were designed for open-available academic research, not for clinical, commercial, second-development, or other use. In addition, if you used it for your academic research, you are encouraged to release the code and the pre-trained model.
  • The interesting and memorable name WORD is suggested by Dr. Jie-Neng, thanks a lot !!!

Citation

It would be highly appreciated if you cite our paper when using the WORD dataset or code:

@article{luo2021word,
  title={{WORD}: Revisiting Organs Segmentation in the Whole Abdominal Region},
  author={Luo, Xiangde and Liao, Wenjun and Xiao, Jianghong and Song, Tao and Zhang, Xiaofan and Li, Kang and Wang, Guotai and Zhang, Shaoting},
  journal={arXiv preprint arXiv:2111.02403},
  year={2021}
}
Owner
Healthcare Intelligence Laboratory
Healthcare Intelligence Laboratory
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
CLUES: Few-Shot Learning Evaluation in Natural Language Understanding

CLUES: Few-Shot Learning Evaluation in Natural Language Understanding This repo contains the data and source code for baseline models in the NeurIPS 2

Microsoft 29 Dec 29, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
An implementation of the efficient attention module.

Efficient Attention An implementation of the efficient attention module. Description Efficient attention is an attention mechanism that substantially

Shen Zhuoran 194 Dec 15, 2022
This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search"

InvariantAncestrySearch This repository contains python code necessary to replicated the experiments performed in our paper "Invariant Ancestry Search

Phillip Bredahl Mogensen 0 Feb 02, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment".

#backdoor-HSIC (bd_HSIC) Accompanying code for the paper "A Kernel Test for Causal Association via Noise Contrastive Backdoor Adjustment". To generate

Robert Hu 0 Nov 25, 2021
Numerai tournament example scripts using NN and optuna

numerai_NN_example Numerai tournament example scripts using pytorch NN, lightGBM and optuna https://numer.ai/tournament Performance of my model based

Takahiro Maeda 12 Oct 10, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
MusicYOLO framework uses the object detection model, YOLOx, to locate notes in the spectrogram.

MusicYOLO MusicYOLO framework uses the object detection model, YOLOX, to locate notes in the spectrogram. Its performance on the ISMIR2014 dataset, MI

Xianke Wang 2 Aug 02, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
Self-supervised Label Augmentation via Input Transformations (ICML 2020)

Self-supervised Label Augmentation via Input Transformations Authors: Hankook Lee, Sung Ju Hwang, Jinwoo Shin (KAIST) Accepted to ICML 2020 Install de

hankook 96 Dec 29, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022