[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Overview

Convolutional MLP

ConvMLP: Hierarchical Convolutional MLPs for Vision

Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision

By Jiachen Li[1,2], Ali Hassani[1]*, Steven Walton[1]*, and Humphrey Shi[1,2,3]

In association with SHI Lab @ University of Oregon[1] and University of Illinois Urbana-Champaign[2], and Picsart AI Research (PAIR)[3]

Comparison

Abstract

MLP-based architectures, which consist of a sequence of consecutive multi-layer perceptron blocks, have recently been found to reach comparable results to convolutional and transformer-based methods. However, most adopt spatial MLPs which take fixed dimension inputs, therefore making it difficult to apply them to downstream tasks, such as object detection and semantic segmentation. Moreover, single-stage designs further limit performance in other computer vision tasks and fully connected layers bear heavy computation. To tackle these problems, we propose ConvMLP: a hierarchical Convolutional MLP for visual recognition, which is a light-weight, stage-wise, co-design of convolution layers, and MLPs. In particular, ConvMLP-S achieves 76.8% top-1 accuracy on ImageNet-1k with 9M parameters and 2.4 GMACs (15% and 19% of MLP-Mixer-B/16, respectively). Experiments on object detection and semantic segmentation further show that visual representation learned by ConvMLP can be seamlessly transferred and achieve competitive results with fewer parameters.

Model

How to run

Getting Started

Our base model is in pure PyTorch and Torchvision. No extra packages are required. Please refer to PyTorch's Getting Started page for detailed instructions.

You can start off with src.convmlp, which contains the three variants: convmlp_s, convmlp_m, convmlp_l:

from src.convmlp import convmlp_l, convmlp_s

model = convmlp_l(pretrained=True, progress=True)
model_sm = convmlp_s(num_classes=10)

Image Classification

timm is recommended for image classification training and required for the training script provided in this repository:

./dist_classification.sh $NUM_GPUS -c $CONFIG_FILE /path/to/dataset

You can use our training configurations provided in configs/classification:

./dist_classification.sh 8 -c configs/classification/convmlp_s_imagenet.yml /path/to/ImageNet
./dist_classification.sh 8 -c configs/classification/convmlp_m_imagenet.yml /path/to/ImageNet
./dist_classification.sh 8 -c configs/classification/convmlp_l_imagenet.yml /path/to/ImageNet

Object Detection

mmdetection is recommended for object detection training and required for the training script provided in this repository:

./dist_detection.sh $CONFIG_FILE $NUM_GPUS /path/to/dataset

You can use our training configurations provided in configs/detection:

./dist_detection.sh configs/detection/retinanet_convmlp_s_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/retinanet_convmlp_m_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/retinanet_convmlp_l_fpn_1x_coco.py 8 /path/to/COCO

Object Detection & Instance Segmentation

mmdetection is recommended for training Mask R-CNN and required for the training script provided in this repository (same as above).

You can use our training configurations provided in configs/detection:

./dist_detection.sh configs/detection/maskrcnn_convmlp_s_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/maskrcnn_convmlp_m_fpn_1x_coco.py 8 /path/to/COCO
./dist_detection.sh configs/detection/maskrcnn_convmlp_l_fpn_1x_coco.py 8 /path/to/COCO

Semantic Segmentation

mmsegmentation is recommended for semantic segmentation training and required for the training script provided in this repository:

./dist_segmentation.sh $CONFIG_FILE $NUM_GPUS /path/to/dataset

You can use our training configurations provided in configs/segmentation:

./dist_segmentation.sh configs/segmentation/fpn_convmlp_s_512x512_40k_ade20k.py 8 /path/to/ADE20k
./dist_segmentation.sh configs/segmentation/fpn_convmlp_m_512x512_40k_ade20k.py 8 /path/to/ADE20k
./dist_segmentation.sh configs/segmentation/fpn_convmlp_l_512x512_40k_ade20k.py 8 /path/to/ADE20k

Results

Image Classification

Feature maps from ResNet50, MLP-Mixer-B/16, our Pure-MLP Baseline and ConvMLP-M are presented in the image below. It can be observed that representations learned by ConvMLP involve more low-level features like edges or textures compared to the rest. Feature map visualization

Dataset Model Top-1 Accuracy # Params MACs
ImageNet ConvMLP-S 76.8% 9.0M 2.4G
ConvMLP-M 79.0% 17.4M 3.9G
ConvMLP-L 80.2% 42.7M 9.9G

If importing the classification models, you can pass pretrained=True to download and set these checkpoints. The same holds for the training script (classification.py and dist_classification.sh): pass --pretrained. The segmentation/detection training scripts also download the pretrained backbone if you pass the correct config files.

Downstream tasks

You can observe the summarized results from applying our model to object detection, instance and semantic segmentation, compared to ResNet, in the image below.

Object Detection

Dataset Model Backbone # Params APb APb50 APb75 Checkpoint
MS COCO Mask R-CNN ConvMLP-S 28.7M 38.4 59.8 41.8 Download
ConvMLP-M 37.1M 40.6 61.7 44.5 Download
ConvMLP-L 62.2M 41.7 62.8 45.5 Download
RetinaNet ConvMLP-S 18.7M 37.2 56.4 39.8 Download
ConvMLP-M 27.1M 39.4 58.7 42.0 Download
ConvMLP-L 52.9M 40.2 59.3 43.3 Download

Instance Segmentation

Dataset Model Backbone # Params APm APm50 APm75 Checkpoint
MS COCO Mask R-CNN ConvMLP-S 28.7M 35.7 56.7 38.2 Download
ConvMLP-M 37.1M 37.2 58.8 39.8 Download
ConvMLP-L 62.2M 38.2 59.9 41.1 Download

Semantic Segmentation

Dataset Model Backbone # Params mIoU Checkpoint
ADE20k Semantic FPN ConvMLP-S 12.8M 35.8 Download
ConvMLP-M 21.1M 38.6 Download
ConvMLP-L 46.3M 40.0 Download

Transfer

Dataset Model Top-1 Accuracy # Params
CIFAR-10 ConvMLP-S 98.0% 8.51M
ConvMLP-M 98.6% 16.90M
ConvMLP-L 98.6% 41.97M
CIFAR-100 ConvMLP-S 87.4% 8.56M
ConvMLP-M 89.1% 16.95M
ConvMLP-L 88.6% 42.04M
Flowers-102 ConvMLP-S 99.5% 8.56M
ConvMLP-M 99.5% 16.95M
ConvMLP-L 99.5% 42.04M

Citation

@article{li2021convmlp,
      title={ConvMLP: Hierarchical Convolutional MLPs for Vision}, 
      author={Jiachen Li and Ali Hassani and Steven Walton and Humphrey Shi},
      year={2021},
      eprint={2109.04454},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
SHI Lab
Research in Synergetic & Holistic Intelligence, with current focus on Computer Vision, Machine Learning, and AI Systems & Applications
SHI Lab
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
A collection of IPython notebooks covering various topics.

ipython-notebooks This repo contains various IPython notebooks I've created to experiment with libraries and work through exercises, and explore subje

John Wittenauer 2.6k Jan 01, 2023
GitHub repository for the ICLR Computational Geometry & Topology Challenge 2021

ICLR Computational Geometry & Topology Challenge 2022 Welcome to the ICLR 2022 Computational Geometry & Topology challenge 2022 --- by the ICLR 2022 W

42 Dec 13, 2022
CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper)

CoReD: Generalizing Fake Media Detection with Continual Representation using Distillation (ACMMM'21 Oral Paper) (Accepted for oral presentation at ACM

Minha Kim 1 Nov 12, 2021
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
LyaNet: A Lyapunov Framework for Training Neural ODEs

LyaNet: A Lyapunov Framework for Training Neural ODEs Provide the model type--config-name to train and test models configured as those shown in the pa

Ivan Dario Jimenez Rodriguez 21 Nov 21, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
Like Dirt-Samples, but cleaned up

Clean-Samples Like Dirt-Samples, but cleaned up, with clear provenance and license info (generally a permissive creative commons licence but check the

TidalCycles 39 Nov 30, 2022
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
Spectrum Surveying: Active Radio Map Estimation with Autonomous UAVs

Spectrum Surveying: The Python code in this repository implements the simulations and plots the figures described in the paper “Spectrum Surveying: Ac

Universitetet i Agder 2 Dec 06, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021)

Canonical Capsules: Unsupervised Capsules in Canonical Pose (NeurIPS 2021) Introduction This is the official repository for the PyTorch implementation

165 Dec 07, 2022