The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Related tags

Deep LearningVAEBM
Overview

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper)

Zhisheng Xiao·Karsten Kreis·Jan Kautz·Arash Vahdat


VAEBM trains an energy network to refine the data distribution learned by an NVAE, where the enery network and the VAE jointly define an Energy-based model. The NVAE is pretrained before training the energy network, and please refer to NVAE's implementation for more details about constructing and training NVAE.

Set up datasets

We trained on several datasets, including CIFAR10, CelebA64, LSUN Church 64 and CelebA HQ 256. For large datasets, we store the data in LMDB datasets for I/O efficiency. Check here for information regarding dataset preparation.

Training NVAE

We use the following commands on each dataset for training the NVAE backbone. To train NVAEs, please use its original codebase with commands given here.

CIFAR-10 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/cifar10 --root $CHECKPOINT_DIR --save $EXPR_ID --dataset cifar10 \
      --num_channels_enc 128 --num_channels_dec 128 --epochs 400 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 1 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --num_groups_per_scale 30 --batch_size 32 \
      --weight_decay_norm 1e-1 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-64 (8x 16-GB GPUs)

python train.py --data  $DATA_DIR/celeba64_lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 50 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

CelebA-HQ-256 (8x 32-GB GPUs)

python train.py -data  $DATA_DIR/celeba/celeba-lmdb --root $CHECKPOINT_DIR --save $EXPR_ID --dataset celeba_256 \
      --num_channels_enc 32 --num_channels_dec 32 --epochs 200 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 --num_preprocess_blocks 1 \
      --num_postprocess_blocks 1 --weight_decay_norm 1e-2 --num_x_bits 5 --num_latent_scales 5 --num_groups_per_scale 4 \
      --num_nf 2 --batch_size 8 --fast_adamax  --num_mixture_dec 1 \
      --weight_decay_norm_anneal  --weight_decay_norm_init 1e1 --learning_rate 6e-3 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

LSUN Churches Outdoor 64 (8x 16-GB GPUs)

python train.py --data $DATA_DIR/LSUN/ --root $CHECKPOINT_DIR --save $EXPR_ID --dataset lsun_church_64 \
      --num_channels_enc 48 --num_channels_dec 48 --epochs 60 --num_postprocess_cells 2 --num_preprocess_cells 2 \
      --num_latent_scales 3 --num_latent_per_group 20 --num_cell_per_cond_enc 2 --num_cell_per_cond_dec 2 \
      --num_preprocess_blocks 1 --num_postprocess_blocks 1 --weight_decay_norm 1e-1 --num_groups_per_scale 5 \
      --batch_size 32 --num_nf 1 --num_mixture_dec 1 --fast_adamax  --warmup_epochs 1 --arch_instance res_mbconv \
      --num_process_per_node 8 --use_se --res_dist

Training VAEBM

We use the following commands on each dataset for training VAEBM. Note that you need to train the NVAE on corresponding dataset before running the training command here. After training the NVAE, pass the path of the checkpoint to the --checkpoint argument.

Note that the training of VAEBM will eventually explode (See Appendix E of our paper), and therefore it is important to save checkpoint regularly. After the training explodes, stop running the code and use the last few saved checkpoints for testing.

CIFAR-10

We train VAEBM on CIFAR-10 using one 32-GB V100 GPU.

python train_VAEBM.py  --checkpoint ./checkpoints/cifar10/checkpoint.pt --experiment cifar10_exp1
--dataset cifar10 --im_size 32 --data ./data/cifar10 --num_steps 10 
--wd 3e-5 --step_size 8e-5 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 --max_p 0.6 
--anneal_step 5000. --batch_size 32 --n_channel 128

CelebA 64

We train VAEBM on CelebA 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --experiment celeba64_exp1 --dataset celeba_64 
--im_size 64 --lr 5e-5 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 5e-6 --total_iter 30000 
--alpha_s 0.2 

LSUN Church 64

We train VAEBM on LSUN Church 64 using one 32-GB V100 GPU.

python train_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --experiment lsunchurch_exp1 --dataset lsun_church 
--im_size 64 --batch_size 32 --n_channel 64 --num_steps 10 --use_mu_cd --wd 3e-5 --step_size 4e-6 --total_iter 30000 --alpha_s 0.2 --lr 4e-5 
--use_buffer --max_p 0.6 --anneal_step 5000

CelebA HQ 256

We train VAEBM on CelebA HQ 256 using four 32-GB V100 GPUs.

python train_VAEBM_distributed.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --experiment celeba256_exp1 --dataset celeba_256
--num_process_per_node 4 --im_size 256 --batch_size 4 --n_channel 64 --num_steps 6 --use_mu_cd --wd 3e-5 --step_size 3e-6 
--total_iter 9000 --alpha_s 0.3 --lr 4e-5 --use_buffer --max_p 0.6 --anneal_step 3000 --buffer_size 2000

Sampling from VAEBM

To generate samples from VAEBM after training, run sample_VAEBM.py, and it will generate 50000 test images in your given path. When sampling, we typically use longer Langvin dynamics than training for better sample quality, see Appendix E of the paper for the step sizes and number of steps we use to obtain test samples for each dataset. Other parameters that ensure successfully loading the VAE and energy network are the same as in the training codes.

For example, the script used to sample CIFAR-10 is

python sample_VAEBM.py --checkpoint ./checkpoints/cifar_10/checkpoint.pt --ebm_checkpoint ./saved_models/cifar_10/cifar_exp1/EBM.pth 
--dataset cifar10 --im_size 32 --batch_size 40 --n_channel 128 --num_steps 16 --step_size 8e-5 

For CelebA 64,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_64/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_64/celeba64_exp1/EBM.pth 
--dataset celeba_64 --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 5e-6 

For LSUN Church 64,

python sample_VAEBM.py --checkpoint ./checkpoints/lsun_church/checkpoint.pt --ebm_checkpoint ./saved_models/lsun_chruch/lsunchurch_exp1/EBM.pth 
--dataset lsun_church --im_size 64 --batch_size 40 --n_channel 64 --num_steps 20 --step_size 4e-6 

For CelebA HQ 256,

python sample_VAEBM.py --checkpoint ./checkpoints/celeba_256/checkpoint.pt --ebm_checkpoint ./saved_models/celeba_256/celeba256_exp1/EBM.pth 
--dataset celeba_256 --im_size 256 --batch_size 10 --n_channel 64 --num_steps 24 --step_size 3e-6 

Evaluation

After sampling, use the Tensorflow or PyTorch implementation to compute the FID scores. For example, when using the Tensorflow implementation, you can obtain the FID score by saving the training images in /path/to/training_images and running the script:

python fid.py /path/to/training_images /path/to/sampled_images

For CIFAR-10, the training statistics can be downloaded from here, and the FID score can be computed by running

python fid.py /path/to/sampled_images /path/to/precalculated_stats.npz

For the Inception Score, save samples in a single numpy array with pixel values in range [0, 255] and simply run

python ./thirdparty/inception_score.py --sample_dir /path/to/sampled_images

where the code for computing Inception Score is adapted from here.

License

Please check the LICENSE file. VAEBM may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Bibtex

Cite our paper using the following bibtex item:

@inproceedings{
xiao2021vaebm,
title={VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models},
author={Zhisheng Xiao and Karsten Kreis and Jan Kautz and Arash Vahdat},
booktitle={International Conference on Learning Representations},
year={2021}
}
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin Sinanoğlu 2 Mar 04, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Short and long time series classification using convolutional neural networks

time-series-classification Short and long time series classification via convolutional neural networks In this project, we present a novel framework f

35 Oct 22, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
A PyTorch implementation of Radio Transformer Networks from the paper "An Introduction to Deep Learning for the Physical Layer".

An Introduction to Deep Learning for the Physical Layer An usable PyTorch implementation of the noisy autoencoder infrastructure in the paper "An Intr

Gram.AI 120 Nov 21, 2022
A LiDAR point cloud cluster for panoptic segmentation

Divide-and-Merge-LiDAR-Panoptic-Cluster A demo video of our method with semantic prior: More information will be coming soon! As a PhD student, I don'

YimingZhao 65 Dec 22, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Learning Optical Flow from a Few Matches (CVPR 2021)

Learning Optical Flow from a Few Matches This repository contains the source code for our paper: Learning Optical Flow from a Few Matches CVPR 2021 Sh

Shihao Jiang (Zac) 159 Dec 16, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022