Learn how to responsibly deliver value with ML.

Overview

 Made With ML

Applied ML · MLOps · Production
Join 30K+ developers in learning how to responsibly deliver value with ML.

     
🔥   Among the top MLOps repositories on GitHub


Foundations

Learn the foundations of ML through intuitive explanations, clean code and visuals.

🛠   Toolkit 🔥   Machine Learning 🤖   Deep Learning
Notebooks Linear Regression CNNs
Python Logistic Regression Embeddings
NumPy Neural Network RNNs
Pandas Data Quality Attention
PyTorch Utilities Transformers

📆   More topics coming soon!
Subscribe for our monthly updates on new content.


MLOps

Learn how to apply ML to build a production grade product to deliver value.

📦   Product 📝   Scripting ♻️   Reproducibility
Objective Organization Git
Solution Packaging Pre-commit
Iteration Documentation Versioning
🔢   Data Styling Docker
Labeling Makefile 🚀   Production
Preprocessing Logging Dashboard
Exploratory data analysis 📦   Interfaces CI/CD workflows
Splitting Command-line Infrastructure
Augmentation RESTful API Monitoring
📈   Modeling   Testing Feature store
Evaluation Code Pipelines
Experiment tracking Data Continual learning
Optimization Models

📆   New lessons every month!
Subscribe for our monthly updates on new content.


FAQ

Who is this content for?

  • Software engineers looking to learn ML and become even better software engineers.
  • Data scientists who want to learn how to responsibly deliver value with ML.
  • College graduates looking to learn the practical skills they'll need for the industry.
  • Product Managers who want to develop a technical foundation for ML applications.

What is the structure?

Lessons will be released weekly and each one will include:

  • intuition: high level overview of the concepts that will be covered and how it all fits together.
  • code: simple code examples to illustrate the concept.
  • application: applying the concept to our specific task.
  • extensions: brief look at other tools and techniques that will be useful for difference situations.

What makes this content unique?

  • hands-on: If you search production ML or MLOps online, you'll find great blog posts and tweets. But in order to really understand these concepts, you need to implement them. Unfortunately, you don’t see a lot of the inner workings of running production ML because of scale, proprietary content & expensive tools. However, Made With ML is free, open and live which makes it a perfect learning opportunity for the community.
  • intuition-first: We will never jump straight to code. In every lesson, we will develop intuition for the concepts and think about it from a product perspective.
  • software engineering: This course isn't just about ML. In fact, it's mostly about clean software engineering! We'll cover important concepts like versioning, testing, logging, etc. that really makes something production-grade product.
  • focused yet holistic: For every concept, we'll not only cover what's most important for our specific task (this is the case study aspect) but we'll also cover related methods (this is the guide aspect) which may prove to be useful in other situations.

Who is the author?

  • I've deployed large scale ML systems at Apple as well as smaller systems with constraints at startups and want to share the common principles I've learned.
  • Connect with me on Twitter and LinkedIn

Why is this free?

While this content is for everyone, it's especially targeted towards people who don't have as much opportunity to learn. I believe that creativity and intelligence are randomly distributed while opportunities are siloed. I want to enable more people to create and contribute to innovation.


To cite this content, please use:
@misc{madewithml,
    author       = {Goku Mohandas},
    title        = {Made With ML},
    howpublished = {\url{https://madewithml.com/}},
    year         = {2021}
}
Owner
Goku Mohandas
Founder @madewithml. AI Research @apple. Author @oreillymedia. ML Lead @Ciitizen. Alum @hopkinsmedicine and @gatech
Goku Mohandas
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
Deploy AutoML as a service using Flask

AutoML Service Deploy automated machine learning (AutoML) as a service using Flask, for both pipeline training and pipeline serving. The framework imp

Chris Rawles 221 Nov 04, 2022
Conducted ANOVA and Logistic regression analysis using matplot library to visualize the result.

Intro-to-Data-Science Conducted ANOVA and Logistic regression analysis. Project ANOVA The main aim of this project is to perform One-Way ANOVA analysi

Chris Yuan 1 Feb 06, 2022
BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python

BioPy is a collection (in-progress) of biologically-inspired algorithms written in Python. Some of the algorithms included are mor

Jared M. Smith 40 Aug 26, 2022
Graphsignal is a machine learning model monitoring platform.

Graphsignal is a machine learning model monitoring platform. It helps ML engineers, MLOps teams and data scientists to quickly address issues with data and models as well as proactively analyze model

Graphsignal 143 Dec 05, 2022
OptaPy is an AI constraint solver for Python to optimize planning and scheduling problems.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 208 Dec 27, 2022
Generate music from midi files using BPE and markov model

Generate music from midi files using BPE and markov model

Aditya Khadilkar 37 Oct 24, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
A collection of neat and practical data science and machine learning projects

Data Science A collection of neat and practical data science and machine learning projects Explore the docs » Report Bug · Request Feature Table of Co

Will Fong 2 Dec 10, 2021
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
About Solve CTF offline disconnection problem - based on python3's small crawler

About Solve CTF offline disconnection problem - based on python3's small crawler, support keyword search and local map bed establishment, currently support Jianshu, xianzhi,anquanke,freebuf,seebug

天河 32 Oct 25, 2022
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
inding a method to objectively quantify skill versus chance in games, using reinforcement learning

Skill-vs-chance-games-analysis - Finding a method to objectively quantify skill versus chance in games, using reinforcement learning

Marcus Chiam 4 Nov 19, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
PySurvival is an open source python package for Survival Analysis modeling

PySurvival What is Pysurvival ? PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or p

Square 265 Dec 27, 2022
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model

A Microsoft Azure Web App project named Covid 19 Predictor using Machine learning Model (Random Forest Classifier Model ) that helps the user to identify whether someone is showing positive Covid sym

Priyansh Sharma 2 Oct 06, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023