The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

Overview

GitHub Contributors Image

MLOps

The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

In this paradigm, teams can easily collaborate in models, with clear tracking of the data throughout the process of cleaning, processing, and feature creation. Automating every repetitive process avoids human error and reduces the delivery time, ensuring the team keeps focusing on the Business Problem.

Some benefits:

  • Versioning data and code, making models to be auditable and reproducible.

  • Automated tests and building ensuring quality functioning of artifacts and availability for the delivery pipelines.

  • Makes it easier and faster the deployment of new models by using an automated cycle.

The MLOps Project

The MLOps project is a path to learning how to implement a study case aiming to be testable and reproducible within the CI/CD methodology, using the best programming practices.

The scope of this project is delimited as you can see in the image below.

We will select the best tool to implement every step, integrate them, and build a Machine Learning Orchestrator. That said, in the end, new ML experiments will be easily made, and delivered as simples as typing a terminal command or clicking on a button!


Prerequisites

For mlops_project to work correctly, first, you should install the prerequisites

Contributing

Have an idea of how to improve this project but don't know how to start, try to contribute

You can understand the project organization here

How to use?

If you are interested just in using this package, follow the steps below.

  1. Clone the repository

    Open a terminal (if you are using Windows, make sure of using the git bash) navigate to the desired destination folder and clone the repository,

    git clone https://github.com/Schots/mlops_project.git

    The Makefile on the root folder defines a set of functions needed to automate repetitive processes in this project. Type "make" in the terminal and see the available functions.


  1. Create an environment & Install requirements

    Create a Python virtual environment for the MLOps project on your local machine. Use any tool you desire. Activate the environment and install the requirements using make:

    make requirements
  2. Download data

    To download the raw dataset, use the get_data

    make get_data

    type the dataset name when prompted. The zip file with data will be downloaded and unzipped under the data/raw folder


Project based on the cookiecutter data science project template. #cookiecutterdatascience

Owner
Maykon Schots
Maykon Schots
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit β€” a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing variance.

minvar_invest_portfolio This project used bitcoin, S&P500, and gold to construct an investment portfolio that aimed to minimize risk by minimizing var

1 Jan 06, 2022
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
Machine Learning Algorithms ( Desion Tree, XG Boost, Random Forest )

implementation of machine learning Algorithms such as decision tree and random forest and xgboost on darasets then compare results for each and implement ant colony and genetic algorithms on tsp map,

Mohamadreza Rezaei 1 Jan 19, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
Project to deploy a machine learning model based on Titanic dataset from Kaggle

kaggle_titanic_deploy Project to deploy a machine learning model based on Titanic dataset from Kaggle In this project we used the Titanic dataset from

Vivian Yamassaki 8 May 23, 2022
customer churn prediction prevention in telecom industry using machine learning and survival analysis

Telco Customer Churn Prediction - Plotly Dash Application Description This dash application allows you to predict telco customer churn using machine l

Benaissa Mohamed FayΓ§al 3 Nov 20, 2021
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
πŸ€– ⚑ scikit-learn tips

πŸ€– ⚑ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. πŸ‘‰ Sign up to receive 2 video tips by email every week! πŸ‘ˆ List of all

Kevin Markham 1.6k Jan 03, 2023
Tools for mathematical optimization region

Tools for mathematical optimization region

ζž—ζ™― 15 Nov 30, 2022
Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn.

Repository Status for Scikit-learn Live webpage Auto updating website that tracks closed & open issues/PRs on scikit-learn/scikit-learn. Running local

Thomas J. Fan 6 Dec 27, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
Adaptive: parallel active learning of mathematical functions

adaptive Adaptive: parallel active learning of mathematical functions. adaptive is an open-source Python library designed to make adaptive parallel fu

741 Dec 27, 2022
Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable.

SDK: Overview of the Kubeflow pipelines service Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on

Kubeflow 3.1k Jan 06, 2023