PySurvival is an open source python package for Survival Analysis modeling

Overview

PySurvival

pysurvival_logo

What is Pysurvival ?

PySurvival is an open source python package for Survival Analysis modeling - the modeling concept used to analyze or predict when an event is likely to happen. It is built upon the most commonly used machine learning packages such NumPy, SciPy and PyTorch.

PySurvival is compatible with Python 2.7-3.7.

Check out the documentation here


Content

PySurvival provides a very easy way to navigate between theoretical knowledge on Survival Analysis and detailed tutorials on how to conduct a full analysis, build and use a model. Indeed, the package contains:


Installation

If you have already installed a working version of gcc, the easiest way to install Pysurvival is using pip

pip install pysurvival

The full description of the installation steps can be found here.


Get Started

Because of its simple API, Pysurvival has been built to provide to best user experience when it comes to modeling. Here's a quick modeling example to get you started:

# Loading the modules
from pysurvival.models.semi_parametric import CoxPHModel
from pysurvival.models.multi_task import LinearMultiTaskModel
from pysurvival.datasets import Dataset
from pysurvival.utils.metrics import concordance_index

# Loading and splitting a simple example into train/test sets
X_train, T_train, E_train, X_test, T_test, E_test = \
	Dataset('simple_example').load_train_test()

# Building a CoxPH model
coxph_model = CoxPHModel()
coxph_model.fit(X=X_train, T=T_train, E=E_train, init_method='he_uniform', 
                l2_reg = 1e-4, lr = .4, tol = 1e-4)

# Building a MTLR model
mtlr = LinearMultiTaskModel()
mtlr.fit(X=X_train, T=T_train, E=E_train, init_method = 'glorot_uniform', 
           optimizer ='adam', lr = 8e-4)

# Checking the model performance
c_index1 = concordance_index(model=coxph_model, X=X_test, T=T_test, E=E_test )
print("CoxPH model c-index = {:.2f}".format(c_index1))

c_index2 = concordance_index(model=mtlr, X=X_test, T=T_test, E=E_test )
print("MTLR model c-index = {:.2f}".format(c_index2))

Citation and License

Citation

If you use Pysurvival in your research and we would greatly appreciate if you could use the following:

@Misc{ pysurvival_cite,
  author =    {Stephane Fotso and others},
  title =     {PySurvival: Open source package for Survival Analysis modeling},
  year =      {2019--},
  url = "https://www.pysurvival.io/"
}

License

Copyright 2019 Square Inc.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Turning images into '9-pan' palettes using KMeans clustering from sklearn.

img2palette Turning images into '9-pan' palettes using KMeans clustering from sklearn. Requirements We require: Pillow, for opening and processing ima

Samuel Vidovich 2 Jan 01, 2022
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
Implementation of deep learning models for time series in PyTorch.

List of Implementations: Currently, the reimplementation of the DeepAR paper(DeepAR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Yunkai Zhang 275 Dec 28, 2022
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 01, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
Python/Sage Tool for deriving Scattering Matrices for WDF R-Adaptors

R-Solver A Python tools for deriving R-Type adaptors for Wave Digital Filters. This code is not quite production-ready. If you are interested in contr

8 Sep 19, 2022
Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies

Crypto-trading - ML techiques are used to forecast short term returns in 14 popular cryptocurrencies. We have amassed a dataset of millions of rows of high-frequency market data dating back to 2018 w

Panagiotis (Panos) Mavritsakis 4 Sep 22, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
Cool Python features for machine learning that I used to be too afraid to use. Will be updated as I have more time / learn more.

python-is-cool A gentle guide to the Python features that I didn't know existed or was too afraid to use. This will be updated as I learn more and bec

Chip Huyen 3.3k Jan 05, 2023
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms

LILLIE: Information Extraction and Database Integration Using Linguistics and Learning-Based Algorithms Based on the work by Smith et al. (2021) Query

5 Aug 06, 2022
Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan

Solar-radiation-ISB-MLOps - Flask app to predict daily radiation from the time series of Solcast from Islamabad, Pakistan.

Abid Ali Awan 1 Dec 31, 2021
An AutoML survey focusing on practical systems.

This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow

AutoGOAL 16 Aug 14, 2022
GroundSeg Clustering Optimized Kdtree

ground seg and clustering based on kitti velodyne data, and a additional optimized kdtree for knn and radius nn search

2 Dec 02, 2021