A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

Overview

One-Stage Visual Grounding

***** New: Our recent work on One-stage VG is available at ReSC.*****

A Fast and Accurate One-Stage Approach to Visual Grounding

by Zhengyuan Yang, Boqing Gong, Liwei Wang, Wenbing Huang, Dong Yu, and Jiebo Luo

IEEE International Conference on Computer Vision (ICCV), 2019, Oral

Introduction

We propose a simple, fast, and accurate one-stage approach to visual grounding. For more details, please refer to our paper.

Citation

@inproceedings{yang2019fast,
  title={A Fast and Accurate One-Stage Approach to Visual Grounding},
  author={Yang, Zhengyuan and Gong, Boqing and Wang, Liwei and Huang
    , Wenbing and Yu, Dong and Luo, Jiebo},
  booktitle={ICCV},
  year={2019}
}

Prerequisites

  • Python 3.5 (3.6 tested)
  • Pytorch 0.4.1
  • Others (Pytorch-Bert, OpenCV, Matplotlib, scipy, etc.)

Installation

  1. Clone the repository

    git clone https://github.com/zyang-ur/onestage_grounding.git
    
  2. Prepare the submodules and associated data

  • RefCOCO & ReferItGame Dataset: place the data or the soft link of dataset folder under ./ln_data/. We follow dataset structure DMS. To accomplish this, the download_dataset.sh bash script from DMS can be used.
    bash ln_data/download_data.sh --path ./ln_data
  • Flickr30K Entities Dataset: please download the images for the dataset on the website for the Flickr30K Entities Dataset and the original Flickr30k Dataset. Images should be placed under ./ln_data/Flickr30k/flickr30k_images.

  • Data index: download the generated index files and place them as the ./data folder. Availble at [Gdrive], [One Drive].

    rm -r data
    tar xf data.tar
    
  • Model weights: download the pretrained model of Yolov3 and place the file in ./saved_models.

    sh saved_models/yolov3_weights.sh
    

More pretrained models are availble in the performance table [Gdrive], [One Drive] and should also be placed in ./saved_models.

Training

  1. Train the model, run the code under main folder. Using flag --lstm to access lstm encoder, Bert is used as the default. Using flag --light to access the light model.

    python train_yolo.py --data_root ./ln_data/ --dataset referit \
      --gpu gpu_id --batch_size 32 --resume saved_models/lstm_referit_model.pth.tar \
      --lr 1e-4 --nb_epoch 100 --lstm
    
  2. Evaluate the model, run the code under main folder. Using flag --test to access test mode.

    python train_yolo.py --data_root ./ln_data/ --dataset referit \
      --gpu gpu_id --resume saved_models/lstm_referit_model.pth.tar \
      --lstm --test
    
  3. Visulizations. Flag --save_plot will save visulizations.

Performance and Pre-trained Models

Please check the detailed experiment settings in our paper.

Dataset Ours-LSTM Performance ([email protected]) Ours-Bert Performance ([email protected])
ReferItGame Gdrive 58.76 Gdrive 59.30
Flickr30K Entities One Drive 67.62 One Drive 68.69
RefCOCO val: 73.66 val: 72.05
testA: 75.78 testA: 74.81
testB: 71.32 testB: 67.59

Credits

Part of the code or models are from DMS, MAttNet, Yolov3 and Pytorch-yolov3.

Owner
Zhengyuan Yang
Zhengyuan Yang
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Let's Git - Versionsverwaltung & Open Source Hausaufgabe Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du vi

1 Dec 13, 2021
This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Motion .

ROSEFusion 🌹 This project is based on our SIGGRAPH 2021 paper, ROSEFusion: Random Optimization for Online DenSE Reconstruction under Fast Camera Moti

219 Dec 27, 2022
Multi agent DDPG algorithm written in Python + Pytorch

Multi agent DDPG algorithm written in Python + Pytorch. It also includes a Jupyter notebook, Tennis.ipynb, as a showcase.

Rogier Wachters 2 Feb 26, 2022
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022