TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

Overview

TextBoxes: A Fast Text Detector with a Single Deep Neural Network

Introduction

This paper presents an end-to-end trainable fast scene text detector, named TextBoxes, which detects scene text with both high accuracy and efficiency in a single network forward pass, involving no post-process except for a standard nonmaximum suppression. For more details, please refer to our paper.

Citing TextBoxes

Please cite TextBoxes in your publications if it helps your research:

@inproceedings{LiaoSBWL17,
  author    = {Minghui Liao and
               Baoguang Shi and
               Xiang Bai and
               Xinggang Wang and
               Wenyu Liu},
  title     = {TextBoxes: {A} Fast Text Detector with a Single Deep Neural Network},
  booktitle = {AAAI},
  year      = {2017}
}

Contents

  1. Installation
  2. Download
  3. Test
  4. Train
  5. Performance

Installation

  1. Get the code. We will call the directory that you cloned Caffe into $CAFFE_ROOT
git clone https://github.com/MhLiao/TextBoxes.git

cd TextBoxes

make -j8

make py

Download

  1. Models trained on ICDAR 2013: Dropbox link BaiduYun link
  2. Fully convolutional reduced (atrous) VGGNet: Dropbox link BaiduYun link
  3. Compiled mex file for evaluation(for multi-scale test evaluation: evaluation_nms.m): Dropbox link BaiduYun link

Test

  1. Download the ICDAR 2013 DataSet
  2. Download the Models trained on ICDAR 2013
  3. Modify the related paths in the "examples/TextBoxes/test_icdar13.py"
  4. run "python examples/test_icdar13.py"
  5. To multi-scale test, you should use "test_icdar13_multi_scale.py" and "evaluation_nms.m"

Train

  1. Train about 50k iterions on Synthetic data which refered in the paper.
  2. Train about 2k iterions on corresponding training data such as ICDAR 2013 and SVT.
  3. For more information, such as learning rate setting, please refer to the paper.

Performance

  1. Using the given test code, you can achieve an F-measure of about 80% on ICDAR 2013 with a single scale.
  2. Using the given multi-scale test code, you can achieve an F-measure of about 85% on ICDAR 2013 with a non-maximum suppression.
  3. More performance information, please refer to the paper and Task1 and Task4 of Challenge2 on the ICDAR 2015 website: http://rrc.cvc.uab.es/?ch=2&com=evaluation

Please let me know if you encounter any issues.

Owner
zhangjing1
zhangjing1
An organized collection of tutorials and projects created for aspriring computer vision students.

A repository created with the purpose of teaching students in BME lab 308A- Hanoi University of Science and Technology

Givralnguyen 5 Nov 24, 2021
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
A simple component to display annotated text in Streamlit apps.

Annotated Text Component for Streamlit A simple component to display annotated text in Streamlit apps. For example: Installation First install Streaml

Thiago Teixeira 312 Dec 30, 2022
Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz.

opencv_yuz_bulma Bu uygulamada Python ve Opencv kullanarak bilgisayar kamerasından yüz tespiti yapıyoruz. Bilgisarın kendi kamerasını kullanmak için;

Ahmet Haydar Ornek 6 Apr 16, 2022
👄 The most accurate natural language detection library for Java and the JVM, suitable for long and short text alike

Quick Info this library tries to solve language detection of very short words and phrases, even shorter than tweets makes use of both statistical and

Peter M. Stahl 532 Dec 28, 2022
OpenCVを用いたカメラキャリブレーションのサンプルです。2021/06/21時点でPython実装のある3種類(通常カメラ向け、魚眼レンズ向け(fisheyeモジュール)、全方位カメラ向け(omnidirモジュール))について用意しています。

OpenCV-CameraCalibration-Example FishEyeCameraCalibration.mp4 OpenCVを用いたカメラキャリブレーションのサンプルです 2021/06/21時点でPython実装のある以下3種類について用意しています。 通常カメラ向け 魚眼レンズ向け(

KazuhitoTakahashi 34 Nov 17, 2022
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
Document Layout Analysis Projects

Layout_Analysis Introduction This is an implementation of RLSA and X-Y Cut with OpenCV Dependencies OpenCV 3.0+ How to use Compile with g++ : g++ -std

22 Dec 08, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
Steve Tu 71 Dec 30, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
Fatigue Driving Detection Based on Dlib

Fatigue Driving Detection Based on Dlib

5 Dec 14, 2022
Generates a message from the infamous Jerma Impostor image

Generate your very own jerma sus imposter message. Modes: Default Mode: Only supports the characters " ", !, a, b, c, d, e, h, i, m, n, o, p, q, r, s,

Giorno420 1 Oct 27, 2022
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
Autonomous Driving project for Euro Truck Simulator 2

hope-autonomous-driving Autonomous Driving project for Euro Truck Simulator 2 Video: How is it working ? In this video, the program processes the imag

Umut Görkem Kocabaş 36 Nov 06, 2022
Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation

This is the official implementation of "Multi-Oriented Scene Text Detection via Corner Localization and Region Segmentation". For more details, please

Pengyuan Lyu 309 Dec 06, 2022
A curated list of awesome synthetic data for text location and recognition

awesome-SynthText A curated list of awesome synthetic data for text location and recognition and OCR datasets. Text location SynthText SynthText_Chine

Tianzhong 283 Jan 05, 2023
ScanTailor Advanced is the version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and fixes.

ScanTailor Advanced The ScanTailor version that merges the features of the ScanTailor Featured and ScanTailor Enhanced versions, brings new ones and f

952 Dec 31, 2022
一键翻译各类图片内文字

一键翻译各类图片内文字 针对群内、各个图站上大量不太可能会有人去翻译的图片设计,让我这种日语小白能够勉强看懂图片 主要支持日语,不过也能识别汉语和小写英文 支持简单的涂白和嵌字

574 Dec 28, 2022
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022