Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Overview

Language: 简体中文 | English

Introduction

This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021.

Illustration

Results

Installation

A Linux platform (Ours are Ubuntu 18.04 LTS) and anaconda3 is recommended, since they can install and manage environments and packages conveniently and efficiently.

A TITAN V GPU and CUDA 10.2 with CuDNN 7.6.5 is recommended, since they can speed up model training.

After anaconda3 installation, you can create a conda environment as below:

conda create -n mial python=3.7 -y
conda activate mial

Please refer to MMDetection v2.3.0 and the install.md of it for environment installation.

Modification in the mmcv Package

To train with two dataloaders (i.e., the labeled set dataloader and the unlabeled set dataloader mentioned in the paper) at the same time, you will need to modify the epoch_based_runner.py in the mmcv package.

Considering that this will affect all code that uses this environment, so we suggest you set up a separate environment for MIAL (i.e., the mialenvironment created above).

cp -v epoch_based_runner.py ~/anaconda3/envs/mial/lib/python3.7/site-packages/mmcv/runner/

Datasets Preparation

Please download VOC2007 datasets ( trainval + test ) and VOC2012 datasets ( trainval ) from:

VOC2007 ( trainval ): http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar

VOC2007 ( test ): http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

VOC2012 ( trainval ): http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar

And after that, please ensure the file directory tree is as below:

├── VOCdevkit
│   ├── VOC2007
│   │   ├── Annotations
│   │   ├── ImageSets
│   │   ├── JPEGImages
│   ├── VOC2012
│   │   ├── Annotations
│   │   ├── ImageSets
│   │   ├── JPEGImages

You may also use the following commands directly:

cd $YOUR_DATASET_PATH
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xf VOCtrainval_06-Nov-2007.tar
tar -xf VOCtest_06-Nov-2007.tar
tar -xf VOCtrainval_11-May-2012.tar

After that, please modify the corresponding dataset directory in this repository, they are located in:

Line 1 of configs/MIAL.py: data_root='$YOUR_DATASET_PATH/VOCdevkit/'
Line 1 of configs/_base_/voc0712.py: data_root='$YOUR_DATASET_PATH/VOCdevkit/'

Please change the $YOUR_DATASET_PATHs above to your actual dataset directory (i.e., the directory where you intend to put the downloaded VOC tar file).

And please use the absolute path (i.e., start with /) but not a relative path (i.e., start with ./ or ../).

Training and Test

We recommend you to use a GPU but not a CPU to train and test, because it will greatly shorten the time.

And we also recommend you to use a single GPU, because the usage of multi-GPU may result in errors caused by the multi-processing of the dataloader.

If you use only a single GPU, you can use the script.sh file directly as below:

chmod 777 ./script.sh
./script.sh $YOUR_GPU_ID

Please change the $YOUR_GPU_ID above to your actual GPU ID number (usually a non-negative number).

Please ignore the error rm: cannot remove './log_nohup/nohup_$YOUR_GPU_ID.log': No such file or directory if you run the script.sh file for the first time.

The script.sh file will use the GPU with the ID number $YOUR_GPU_ID and PORT (30000+$YOUR_GPU_ID*100) to train and test.

The log file will not flush in the terminal, but will be saved and updated in the file ./log_nohup/nohup_$YOUR_GPU_ID.log and ./work_dirs/MIAL/$TIMESTAMP.log . These two logs are the same. You can change the directories and names of the latter log files in Line 48 of ./configs/MIAL.py .

You can also use other files in the directory './work_dirs/MIAL/ if you like, they are as follows:

  • JSON file $TIMESTAMP.log.json

    You can load the losses and mAPs during training and test from it more conveniently than from the ./work_dirs/MIAL/$TIMESTAMP.log file.

  • npy file X_L_$CYCLE.npy and X_U_$CYCLE.npy

    The $CYCLE is an integer from 0 to 6, which are the active learning cycles.

    You can load the indexes of the labeled set and unlabeled set for each cycle from them.

    The indexes are the integers from 0 to 16550 for PASCAL VOC datasets, where 0 to 5010 is for PASCAL VOC 2007 trainval set and 5011 to 16550 for PASCAL VOC 2012 trainval set.

    An example code for loading these files is the Line 108-114 in the ./tools/train.py file (which are in comments now).

  • pth file epoch_$EPOCH.pth and latest.pth

    The $EPOCH is an integer from 0 to 2, which are the epochs of the last label set training.

    You can load the model state dictionary from them.

    An example code for loading these files is the Line 109, 143-145 in the ./tools/train.py file (which are in comments now).

  • txt file trainval_L_07.txt, trainval_U_07.txt, trainval_L_12.txt and trainval_U_12.txt in each cycle$CYCLE directory

    The $CYCLE is the same as above.

    You can load the names of JPEG images of the labeled set and unlabeled set for each cycle from them.

    "L" is for the labeled set and "U" is for the unlabeled set. "07" is for the PASCAL VOC 2007 trainval set and "12" is for the PASCAL VOC 2012 trainval set.

Code Structure

├── $YOUR_ANACONDA_DIRECTORY
│   ├── anaconda3
│   │   ├── envs
│   │   │   ├── mial
│   │   │   │   ├── lib
│   │   │   │   │   ├── python3.7
│   │   │   │   │   │   ├── site-packages
│   │   │   │   │   │   │   ├── mmcv
│   │   │   │   │   │   │   │   ├── runner
│   │   │   │   │   │   │   │   │   ├── epoch_based_runner.py
│
├── ...
│
├── configs
│   ├── _base_
│   │   ├── default_runtime.py
│   │   ├── retinanet_r50_fpn.py
│   │   ├── voc0712.py
│   ├── MIAL.py
│── log_nohup
├── mmdet
│   ├── apis
│   │   ├── __init__.py
│   │   ├── test.py
│   │   ├── train.py
│   ├── models
│   │   ├── dense_heads
│   │   │   ├── __init__.py
│   │   │   ├── MIAL_head.py
│   │   │   ├── MIAL_retina_head.py
│   │   │   ├── base_dense_head.py 
│   │   ├── detectors
│   │   │   ├── base.py
│   │   │   ├── single_stage.py
│   ├── utils
│   │   ├── active_datasets.py
├── tools
│   ├── train.py
├── work_dirs
│   ├── MIAL
├── script.sh

The code files and folders shown above are the main part of MIAL, while other code files and folders are created following MMDetection to avoid potential problems.

The explanation of each code file or folder is as follows:

  • epoch_based_runner.py: Code for training and test in each epoch, which can be called by ./apis/train.py.
  • configs: Configuration folder, including running settings, model settings, dataset settings and other custom settings for active learning and MIAL.
    • __base__: Base configuration folder provided by MMDetection, which only need a little modification and then can be recalled by .configs/MIAL.py.
      • default_runtime.py: Configuration code for running settings, which can be called by ./configs/MIAL.py.
      • retinanet_r50_fpn.py: Configuration code for model training and test settings, which can be called by ./configs/MIAL.py.
      • voc0712.py: Configuration code for PASCAL VOC dataset settings and data preprocessing, which can be called by ./configs/MIAL.py.
    • MIAL.py: Configuration code in general including most custom settings, containing active learning dataset settings, model training and test parameter settings, custom hyper-parameter settings, log file and model saving settings, which can be mainly called by ./tools/train.py. The more detailed introduction of each parameter is in the comments of this file.
  • log_nohup: Log folder for storing log output on each GPU temporarily.
  • mmdet: The core code folder for MIAL, including intermidiate training code, object detectors and detection heads and active learning dataset establishment.
    • apis: The inner training, test and calculating uncertainty code folder of MIAL.
      • __init__.py: Some function initialization in the current folder.
      • test.py: Code for testing the model and calculating uncertainty, which can be called by epoch_based_runner.py and ./tools/train.py.
      • train.py: Code for setting random seed and creating training dataloaders to prepare for the following epoch-level training, which can be called by ./tools/train.py.
    • models: The code folder with the details of network model architecture, training loss, forward propagation in test and calculating uncertainty.
      • dense_heads: The code folder of training loss and the network model architecture, especially the well-designed head architecture.
        • __init__.py: Some function initialization in the current folder.
        • MIAL_head.py: Code for forwarding anchor-level model output, calculating anchor-level loss, generating pseudo labels and getting bounding boxes from existing model output in more details, which can be called by ./mmdet/models/dense_heads/base_dense_head.py and ./mmdet/models/detectors/single_stage.py.
        • MIAL_retina_head.py: Code for building the MIAL model architecture, especially the well-designed head architecture, and define the forward output, which can be called by ./mmdet/models/dense_heads/MIAL_head.py.
        • base_dense_head.py: Code for choosing different equations to calculate loss, which can be called by ./mmdet/models/detectors/single_stage.py.
      • detectors: The code folder of the forward propogation and backward propogation in the overall training, test and calculating uncertainty process.
        • base.py: Code for arranging training loss to print and returning the loss and image information, which can be called by epoch_based_runner.py.
        • single_stage.py: Code for extracting image features, getting bounding boxes from the model output and returning the loss, which can be called by ./mmdet/models/detectors/base.py.
    • utils: The code folder for creating active learning datasets.
      • active_dataset.py: Code for creating active learning datasets, including creating initial labeled set, creating the image name file for the labeled set and unlabeled set and updating the labeled set after each active learning cycle, which can be called by ./tools/train.py.
  • tools: The outer training and test code folder of MIAL.
    • train.py: Outer code for training and test for MIAL, including generating PASCAL VOC datasets for active learning, loading image sets and models, Instance Uncertainty Re-weighting and Informative Image Selection in general, which can be called by ./script.sh.
  • work_dirs: Work directory of the index and image name of the labeled set and unlabeled set for each cycle, all log and json outputs and the model state dictionary for the last 3 cycle, which are introduced in the Training and Test part above.
  • script.sh: The script to run MIAL on a single GPU. You can run it to train and test MIAL simply and directly mentioned in the Training and Test part above as long as you have prepared the conda environment and PASCAL VOC 2007+2012 datasets.

If you find this repository useful for your publications, please consider citing our paper.

@inproceedings{MIAL2021,
    author    = {Tianning Yuan and
                 Fang Wan and
                 Mengying Fu and
                 Jianzhuang Liu and
                 Songcen Xu and
                 Xiangyang Ji and
                 Qixiang Ye},
    title     = {Multiple Instance Active Learning for Object Detection},
    booktitle = {CVPR},
    year      = {2021}
}
Owner
Tianning Yuan
A master student of UCAS (University of Chinese Academy of Sciences).
Tianning Yuan
Unsupervised Representation Learning by Invariance Propagation

Unsupervised Learning by Invariance Propagation This repository is the official implementation of Unsupervised Learning by Invariance Propagation. Pre

FengWang 15 Jul 06, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
A simple python program that can be used to implement user authentication tokens into your program...

token-generator A simple python module that can be used by developers to implement user authentication tokens into your program... code examples creat

octo 6 Apr 18, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
This app is a simple example of using Strealit to create a financial data web app.

Streamlit Demo: Finance Chart This app is a simple example of using Streamlit to create a financial data web app. This demo use streamlit, pandas and

91 Jan 02, 2023
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers

SAGE: Sensitivity-guided Adaptive Learning Rate for Transformers This repo contains our codes for the paper "No Parameters Left Behind: Sensitivity Gu

Chen Liang 23 Nov 07, 2022
TDN: Temporal Difference Networks for Efficient Action Recognition

TDN: Temporal Difference Networks for Efficient Action Recognition Overview We release the PyTorch code of the TDN(Temporal Difference Networks).

Multimedia Computing Group, Nanjing University 326 Dec 13, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
D-NeRF: Neural Radiance Fields for Dynamic Scenes

D-NeRF: Neural Radiance Fields for Dynamic Scenes [Project] [Paper] D-NeRF is a method for synthesizing novel views, at an arbitrary point in time, of

Albert Pumarola 291 Jan 02, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022