2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

Overview

TableMASTER-mmocr

Contents

  1. About The Project
  2. Getting Started
  3. Usage
  4. Result
  5. License
  6. Acknowledgements

About The Project

This project presents our 2nd place solution for ICDAR 2021 Competition on Scientific Literature Parsing, Task B. We reimplement our solution by MMOCR,which is an open-source toolbox based on PyTorch. You can click here for more details about this competition. Our original implementation is based on FastOCR (one of our internal toolbox similar with MMOCR).

Method Description

In our solution, we divide the table content recognition task into four sub-tasks: table structure recognition, text line detection, text line recognition, and box assignment. Based on MASTER, we propose a novel table structure recognition architrcture, which we call TableMASTER. The difference between MASTER and TableMASTER will be shown below. You can click here for more details about this solution.

MASTER's architecture

Dependency

Getting Started

Prerequisites

  • Competition dataset PubTabNet, click here for downloading.
  • About PubTabNet, check their github and paper.
  • About the metric TEDS, see github

Installation

  1. Install mmdetection. click here for details.

    # We embed mmdetection-2.11.0 source code into this project.
    # You can cd and install it (recommend).
    cd ./mmdetection-2.11.0
    pip install -v -e .
  2. Install mmocr. click here for details.

    # install mmocr
    cd ./MASTER_mmocr
    pip install -v -e .
  3. Install mmcv-full-1.3.4. click here for details.

    pip install mmcv-full=={mmcv_version} -f https://download.openmmlab.com/mmcv/dist/{cu_version}/{torch_version}/index.html
    
    # install mmcv-full-1.3.4 with torch version 1.8.0 cuda_version 10.2
    pip install mmcv-full==1.3.4 -f https://download.openmmlab.com/mmcv/dist/cu102/torch1.8.0/index.html

Usage

Data preprocess

Run data_preprocess.py to get valid train data. Remember to change the 'raw_img_root' and ‘save_root’ property of PubtabnetParser to your path.

python ./table_recognition/data_preprocess.py

It will about 8 hours to finish parsing 500777 train files. After finishing the train set parsing, change the property of 'split' folder in PubtabnetParser to 'val' and get formatted val data.

Directory structure of parsed train data is :

.
├── StructureLabelAddEmptyBbox_train
│   ├── PMC1064074_007_00.txt
│   ├── PMC1064076_003_00.txt
│   ├── PMC1064076_004_00.txt
│   └── ...
├── recognition_train_img
│   ├── 0
│       ├── PMC1064100_007_00_0.png
│       ├── PMC1064100_007_00_10.png
│       ├── ...
│       └── PMC1064100_007_00_108.png
│   ├── 1
│   ├── ...
│   └── 15
├── recognition_train_txt
│   ├── 0.txt
│   ├── 1.txt
│   ├── ...
│   └── 15.txt
├── structure_alphabet.txt
└── textline_recognition_alphabet.txt

Train

  1. Train text line detection model with PSENet.

    sh ./table_recognition/table_text_line_detection_dist_train.sh

    We don't offer PSENet train data here, you can create the text line annotations by open source label software. In our experiment, we only use 2,500 table images to train our model. It gets a perfect text line detection result on validation set.

  2. Train text-line recognition model with MASTER.

    sh ./table_recognition/table_text_line_recognition_dist_train.sh

    We can get about 30,000,000 text line images from 500,777 training images and 550,000 text line images from 9115 validation images. But we only select 20,000 text line images from 550,000 dataset for evaluatiing after each trainig epoch, to pick up the best text line recognition model.

    Note that our MASTER OCR is directly trained on samples mixed with single-line texts and multiple-line texts.

  3. Train table structure recognition model, with TableMASTER.

    sh ./table_recognition/table_recognition_dist_train.sh

Inference

To get final results, firstly, we need to forward the three up-mentioned models, respectively. Secondly, we merge the results by our matching algorithm, to generate the final HTML code.

  1. Models inference. We do this to speed up the inference.
python ./table_recognition/run_table_inference.py

run_table_inference.py wil call table_inference.py and use multiple gpu devices to do model inference. Before running this script, you should change the value of cfg in table_inference.py .

Directory structure of text line detection and text line recognition inference results are:

# If you use 8 gpu devices to inference, you will get 8 detection results pickle files, one end2end_result pickle files and 8 structure recognition results pickle files. 
.
├── end2end_caches
│   ├── end2end_results.pkl
│   ├── detection_results_0.pkl
│   ├── detection_results_1.pkl
│   ├── ...
│   └── detection_results_7.pkl
├── structure_master_caches
│   ├── structure_master_results_0.pkl
│   ├── structure_master_results_1.pkl
│   ├── ...
│   └── structure_master_results_7.pkl
  1. Merge results.
python ./table_recognition/match.py

After matching, congratulations, you will get final result pickle file.

Get TEDS score

  1. Installation.

    pip install -r ./table_recognition/PubTabNet-master/src/requirements.txt
  2. Get gtVal.json.

    python ./table_recognition/get_val_gt.py
  3. Calcutate TEDS score. Before run this script, modify pred file path and gt file path in mmocr_teds_acc_mp.py

    python ./table_recognition/PubTabNet-master/src/mmocr_teds_acc_mp.py

Result

Text line end2end recognition accuracy

Models Accuracy
PSENet + MASTER 0.9885

Structure recognition accuracy

Model architecture Accuracy
TableMASTER_maxlength_500 0.7808
TableMASTER_ConcatLayer_maxlength_500 0.7821
TableMASTER_ConcatLayer_maxlength_600 0.7799

TEDS score

Models TEDS
PSENet + MASTER + TableMASTER_maxlength_500 0.9658
PSENet + MASTER + TableMASTER_ConcatLayer_maxlength_500 0.9669
PSENet + MASTER + ensemble_TableMASTER 0.9676

In this paper, we reported 0.9684 TEDS score in validation set (9115 samples). The gap between 0.9676 and 0.9684 comes from that we ensemble three text line models in the competition, but here, we only use one model. Of course, hyperparameter tuning will also affect TEDS score.

License

This project is licensed under the MIT License. See LICENSE for more details.

Citations

@article{ye2021pingan,
  title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Literature Parsing Task B: Table Recognition to HTML},
  author={Ye, Jiaquan and Qi, Xianbiao and He, Yelin and Chen, Yihao and Gu, Dengyi and Gao, Peng and Xiao, Rong},
  journal={arXiv preprint arXiv:2105.01848},
  year={2021}
}
@article{He2021PingAnVCGroupsSF,
  title={PingAn-VCGroup's Solution for ICDAR 2021 Competition on Scientific Table Image Recognition to Latex},
  author={Yelin He and Xianbiao Qi and Jiaquan Ye and Peng Gao and Yihao Chen and Bingcong Li and Xin Tang and Rong Xiao},
  journal={ArXiv},
  year={2021},
  volume={abs/2105.01846}
}
@article{Lu2021MASTER,
  title={{MASTER}: Multi-Aspect Non-local Network for Scene Text Recognition},
  author={Ning Lu and Wenwen Yu and Xianbiao Qi and Yihao Chen and Ping Gong and Rong Xiao and Xiang Bai},
  journal={Pattern Recognition},
  year={2021}
}
@article{li2018shape,
  title={Shape robust text detection with progressive scale expansion network},
  author={Li, Xiang and Wang, Wenhai and Hou, Wenbo and Liu, Ruo-Ze and Lu, Tong and Yang, Jian},
  journal={arXiv preprint arXiv:1806.02559},
  year={2018}
}

Acknowledgements

Owner
Jianquan Ye
Jianquan Ye
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
NVIDIA container runtime

nvidia-container-runtime A modified version of runc adding a custom pre-start hook to all containers. If environment variable NVIDIA_VISIBLE_DEVICES i

NVIDIA Corporation 938 Jan 06, 2023
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Code repository for "Stable View Synthesis".

Stable View Synthesis Code repository for "Stable View Synthesis". Setup Install the following Python packages in your Python environment - numpy (1.1

Intelligent Systems Lab Org 195 Dec 24, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
SphereFace: Deep Hypersphere Embedding for Face Recognition

SphereFace: Deep Hypersphere Embedding for Face Recognition By Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj and Le Song License SphereFa

Weiyang Liu 1.5k Dec 29, 2022
A lightweight face-recognition toolbox and pipeline based on tensorflow-lite

FaceIDLight 📘 Description A lightweight face-recognition toolbox and pipeline based on tensorflow-lite with MTCNN-Face-Detection and ArcFace-Face-Rec

Martin Knoche 16 Dec 07, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Framework for evaluating ANNS algorithms on billion scale datasets.

Billion-Scale ANN http://big-ann-benchmarks.com/ Install The only prerequisite is Python (tested with 3.6) and Docker. Works with newer versions of Py

Harsha Vardhan Simhadri 132 Dec 24, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting" by Shu et al.

[Re] Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting Reimplementation of NeurIPS'19: "Meta-Weight-Net: Learning an Explicit Mapping

Robert Cedergren 1 Mar 13, 2020
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Detecting drunk people through thermal images using Deep Learning (CNN)

Drunk Detection CNN Detecting drunk people through thermal images using Deep Learning (CNN) Dataset We used thermal images provided by Electronics Lab

Giacomo Ferretti 3 Oct 27, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021