MaskTrackRCNN for video instance segmentation based on mmdetection

Overview

MaskTrackRCNN for video instance segmentation

Introduction

This repo serves as the official code release of the MaskTrackRCNN model for video instance segmentation described in the tech report:

@article{ Yang2019vis,
  author = {Linjie Yang and Yuchen Fan and Ning Xu},  
  title = {Video instance segmentation},
  journal = {CoRR},
  volume = {abs/1905.04804},
  year = {2019},
  url = {https://arxiv.org/abs/1905.04804}
}

In this work, a new task video instance segmentation is presented. Video instance segmentation extends the image instance segmentation task from the image domain to the video domain. The new problem aims at simultaneous detection, segmentation and tracking of object instances in videos. YouTubeVIS, a new dataset tailored for this task is collected based on the current largest video object segmentation dataset YouTubeVOS. Sample annotations of a video clip can be seen below. We also proposed an algorithm to jointly detect, segment, and track object instances in a video, named MaskTrackRCNN. A tracking head is added to the original MaskRCNN model to match objects across frames. An overview of the algorithm is shown below.

Installation

This repo is built based on mmdetection commit hash f3a939f. Please refer to INSTALL.md to install the library. You also need to install a customized COCO API for YouTubeVIS dataset. You can use following commands to create conda env with all dependencies.

conda create -n MaskTrackRCNN -y
conda activate MaskTrackRCNN
conda install -c pytorch pytorch=0.4.1 torchvision cuda92 -y
conda install -c conda-forge cudatoolkit-dev=9.2 opencv -y
conda install cython -y
pip install git+https://github.com/youtubevos/cocoapi.git#"egg=pycocotools&subdirectory=PythonAPI"
bash compile.sh
pip install .

You may also need to follow #1 to load MSCOCO pretrained models.

Model training and evaluation

Our model is based on MaskRCNN-resnet50-FPN. The model is trained end-to-end on YouTubeVIS based on a MSCOCO pretrained checkpoint (link).

Training

  1. Download YouTubeVIS from here.
  2. Symlink the train/validation dataset to $MMDETECTION/data folder. Put COCO-style annotations under $MMDETECTION/data/annotations.
mmdetection
├── mmdet
├── tools
├── configs
├── data
│   ├── train
│   ├── val
│   ├── annotations
│   │   ├── instances_train_sub.json
│   │   ├── instances_val_sub.json
  1. Run python3 tools/train.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py to train the model. For reference to arguments such as learning rate and model parameters, please refer to configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py

Evaluation

Our pretrained model is available for download at Google Drive. Run the following command to evaluate the model on YouTubeVIS.

python3 tools/test_video.py configs/masktrack_rcnn_r50_fpn_1x_youtubevos.py [MODEL_PATH] --out [OUTPUT_PATH] --eval segm

A json file containing the predicted result will be generated as OUTPUT_PATH.json. YouTubeVIS currently only allows evaluation on the codalab server. Please upload the generated result to codalab server to see actual performances.

License

This project is released under the Apache 2.0 license.

Contact

If you have any questions regarding the repo, please contact Linjie Yang ([email protected]) or create an issue.

Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification Suncheng Xiang Shanghai Jiao Tong University Over

SunchengXiang 68 Dec 13, 2022
Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder

Memory Defense: More Robust Classificationvia a Memory-Masking Autoencoder Authors: - Eashan Adhikarla - Dan Luo - Dr. Brian D. Davison Abstract Many

Eashan Adhikarla 4 Dec 25, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor

Phase-SLAM A Pose Estimator for Dense Reconstruction with the Structured Light Illumination Sensor This open source is written by MATLAB Run Mode Open

Xi Zheng 14 Dec 19, 2022
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

Rishit Dagli 32 Feb 21, 2022
5 Jan 05, 2023
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
“Data Augmentation for Cross-Domain Named Entity Recognition” (EMNLP 2021)

Data Augmentation for Cross-Domain Named Entity Recognition Authors: Shuguang Chen, Gustavo Aguilar, Leonardo Neves and Thamar Solorio This repository

<a href=[email protected]"> 18 Sep 10, 2022
Continual reinforcement learning baselines: experiment specifications, implementation of existing methods, and common metrics. Easily extensible to new methods.

Continual Reinforcement Learning This repository provides a simple way to run continual reinforcement learning experiments in PyTorch, including evalu

55 Dec 24, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
A CV toolkit for my papers.

PyTorch-Encoding created by Hang Zhang Documentation Please visit the Docs for detail instructions of installation and usage. Please visit the link to

Hang Zhang 2k Jan 04, 2023
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
some academic posters as references. May we have in-person poster session soon!

some academic posters as references. May we have in-person poster session soon!

Bolei Zhou 472 Jan 06, 2023