Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Related tags

Deep LearningFineGPR
Overview

Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification

Suncheng Xiang

Shanghai Jiao Tong University

Overview

In this paper, we construct and label a large-scale synthetic person dataset named FineGPR with fine-grained attribute distribution. Moreover, aiming to fully exploit the potential of FineGPR and promote the efficient training from millions of synthetic data, we propose an attribute analysis pipeline AOST to learn attribute distribution in target domain, then apply style transfer network to eliminate the gap between synthetic and real-world data and thus is freely deployed to new scenarios. Experiments conducted on benchmarks demonstrate that FineGPR with AOST outperforms (or is on par with) existing real and synthetic datasets, which suggests its feasibility for re-ID and proves the proverbial less-is-more principle. We hope this fine-grained dataset could advance research towards re-ID in real scenarios.


[Paper] [Video Sample] [Related Project]


πŸ”₯ NEWS πŸ”₯

  • [10/2021] πŸ“£ The first FineGPR-C caption dataset involving human describing event is coming !

  • [09/2021] πŸ“£ The large-scale synthetic person dataset FineGPR with fine-grained attribute distribution is released !


Table of Contents πŸ‘€


FineGPR Introduction

The FineGPR dataset is generated by a popular GTA5 game engine that can synthesise images under controllable viewpoints, weathers,illuminations and backgrounds, as well as 13 fine-grained attributes at the identity level πŸ‘ .

Our FineGPR dataset provides fine-grained and accurately configurable annotations, including 36 different viewpoints, 7 different kinds of weathers, 7 different kinds of illuminations, and 9 different kinds of backgrounds.

Viewpoint πŸ“·

Definition of different viewpoints. Viewpoints of one identity are sampled at an interval of 10Β°, e.g. 0Β°-80Β° denotes that a person has 9 different angles in total.

Weather 🌨 and Illumination πŸŽ‡

The exemplars of different weather distribution (left) and illumination distribution (right) from the proposed FineGPR dataset.

Attributes at the Identity Level ⛹️‍♀️

The distributions of attributes at the identity level on FineGPR. The left figure shows the numbers of IDs for each attribute. The middle and right pies illustrate the distribution of the colors of upper-body and low-body clothes respectively.

Some visual exemplars with ID-level pedestrian attributes in the proposed FineGPR dataset, such as Wear short sleeve , Wear dress, Wear hat, Carry bag, etc.


Comparison with existing datasets

Some Mainstream Datasets for Person Re-Identification

For related FineGPR dataset (details of the previous related work, please refer to the our homepage GPR πŸ”Ž :

dataset IDs (ID-Attributes) boxs cams weathers illumination scene resolution
Market-1501 1,501 ( βœ”οΈ ) 32,668 6 - - - low
CUHK03 1,467 ( ❌ ) 14,096 2 - - - low
DukeMTMC-reID 1,404 ( βœ”οΈ ) 36,411 8 - - - low
MSMT17 4,101 ( ❌ ) 126,441 15 - - - vary
SOMAset 50 ( ❌ ) 100,000 250 - - - -
SyRI 100 ( ❌ ) 1,680,000 100 - 140 - -
PersonX 1,266 ( ❌ ) 273,456 6 - - 1 vary
Unreal 3,000 ( ❌ ) 120,000 34 - - 1 low
RandPerson 8,000 ( ❌ ) 1,801,816 19 - - 4 low
FineGPR 1150 ( βœ”οΈ ) 2,028,600 36 7 7 9 high

Link of the Dataset

Data of FineGPR for Viewpoint Analysis

A small subset of FineGPR can be downloaded from the following links:

Directories & Files of images

FineGPR_Dataset 
β”œβ”€β”€ FineGPR/   # This file is our original dataset, we provide the samples of ID=0001 and ID=0003 in this file folder.
β”‚   β”œβ”€β”€ 0001
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l01_p01.jpg 
β”‚   β”‚	β”œβ”€β”€ 0001_c01_w01_l02_p01.jpg  
β”‚   β”‚   β”œβ”€β”€ 0001_c01_w01_l03_p01.jpg
β”‚   β”‚   └── ...
β”‚   β”œβ”€β”€ 0003/
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l01_p06.jpg  
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l02_p06.jpg
β”‚   β”‚   β”œβ”€β”€ 0003_c01_w01_l03_p06.jpg	   
β”‚   β”‚   └── ...
β”‚   └── ...
β”œβ”€β”€ FineGPR_subset   # This file is the subset of FineGPR dataset, each Identity contains 4 images. 
β”‚   β”œβ”€β”€ 0001_c01_w03_l05_p03.jpg 
β”‚   β”œβ”€β”€ 0001_c10_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c19_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0001_c28_w03_l05_p03.jpg
β”‚   β”œβ”€β”€ 0003_c01_w03_l05_p08.jpg 
β”‚   β”œβ”€β”€ 0003_c10_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c19_w03_l05_p08.jpg
β”‚   β”œβ”€β”€ 0003_c28_w03_l05_p08.jpg  
β”‚   └── ...
└── README.md   # Readme file

Name of the image

Taking "0001_c01_w01_l01_p01.jpg" as an example:

  • 0001 is the id of the person
  • c01 is the id of the camera
  • w01 is the id of the weather
  • l01 is the id of the illumination
  • p01 is the id of the background

Viewpoint annotations

FineGPR
β”œβ”€β”€ c01:90Β°      β”œβ”€β”€ c10:180Β°      β”œβ”€β”€ c19:270Β°      β”œβ”€β”€ c28:0Β°
β”œβ”€β”€ c02:100Β°     β”œβ”€β”€ c11:190Β°      β”œβ”€β”€ c20:280Β°      β”œβ”€β”€ c29:10Β°
β”œβ”€β”€ c03:110Β°     β”œβ”€β”€ c12:200Β°      β”œβ”€β”€ c21:290Β°      β”œβ”€β”€ c30:20Β°
β”œβ”€β”€ c04:120Β°     β”œβ”€β”€ c13:210Β°      β”œβ”€β”€ c22:300Β°      β”œβ”€β”€ c31:30Β°
β”œβ”€β”€ c05:130Β°     β”œβ”€β”€ c14:220Β°      β”œβ”€β”€ c23:310Β°      β”œβ”€β”€ c32:40Β°
β”œβ”€β”€ c06:140Β°     β”œβ”€β”€ c15:230Β°      β”œβ”€β”€ c24:320Β°      β”œβ”€β”€ c33:50Β°
β”œβ”€β”€ c07:150Β°     β”œβ”€β”€ c16:240Β°      β”œβ”€β”€ c25:330Β°      β”œβ”€β”€ c34:60Β°
β”œβ”€β”€ c08:160Β°     β”œβ”€β”€ c17:250Β°      β”œβ”€β”€ c26:340Β°      β”œβ”€β”€ c35:70Β°
└── c09:170Β°     └── c18:260Β°      └── c27:350Β°      └── c36:80Β°

Weather annotations

FineGPR
β”œβ”€β”€ w01:Sunny
β”œβ”€β”€ w02:Clouds    
β”œβ”€β”€ w03:Overcast
β”œβ”€β”€ w04:Foggy   
β”œβ”€β”€ w05:Neutral
β”œβ”€β”€ w06:Blizzard 
└── w07:Snowlight 	   

Illumination annotations

FineGPR
β”œβ”€β”€ l01:Midnight
β”œβ”€β”€ l02:Dawn    
β”œβ”€β”€ l03:Forenoon
β”œβ”€β”€ l04:Noon   
β”œβ”€β”€ l05:Afternoon
β”œβ”€β”€ l06:Dusk 
└── l07:Night 	   

Scene annotations

FineGPR
β”œβ”€β”€ p01:Urban
β”œβ”€β”€ p02:Urban   
β”œβ”€β”€ p03:Wild
β”œβ”€β”€ p04:Urban   
β”œβ”€β”€ p05:Wild
β”œβ”€β”€ p06:Urban
β”œβ”€β”€ p07:Urban
β”œβ”€β”€ p08:Wild 
└── p09:Urban 	   

Method

πŸ’‘ The two-stage pipeline AOST to learn attribute distribution of target domain. Firstly, we learn attribute distribution of real domain on the basis of XGBoost & PSO learning system. Secondly, we perform style transfer to enhance the reality of optimal dataset. Finally, the transferred data are adopted for downstream re-ID task.


Results

Performance comparison with existing Real and Synthetic datasets on Market-1501, DukeMTMC-reID and CUHK03, respectively.

References

  • [1] Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. CVPR 2018.
  • [2] Bag of tricks and a strong baseline for deep person re-identification. CVPRW 2019.

Extendibility

Accompanied with our FineGPR, we also provide some human body masks (Middle) and keypoint locations (Bottom) of all characters during the annotation. We hope that our synthetic dataset FineGPR can not only contribute a lot to the development of generalizable person re-ID, but also advance the research of other computer vision tasks, such as human part segmentation and pose estimation.

FineGPR-C caption dataset

On the basis of FineGPR dafaset, we introduce a dynamic strategy to generate high-quality captions with fine-grained attribute annotations for semantic-based pretraining. To be more specific, we rearrange the different attributes as word embeddings into caption formula in the different position, and then generate semantically dense caption with high-quality description, which gives rise to our newly constructed FineGPR-C caption dataset.

A small subset of FineGPR-C caption dataset can be downloaded from the following links:

Citation

If you use our FineGPR dataset for your research, please cite our Paper.

@article{xiang2021less,
  title={Less is More: Learning from Synthetic Data with Fine-grained Attributes for Person Re-Identification},
  author={Xiang, Suncheng and You, Guanjie and Guan, Mengyuan and Chen, Hao and Wang, Feng and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2109.10498},
  year={2021}
}

If you do think this FineGPR-C caption dataset is useful and have used it in your research, please cite our Paper.

@article{xiang2021vtbr,
  title={VTBR: Semantic-based Pretraining for Person Re-Identification},
  author={Xiang, Suncheng and Zhang, Zirui and Guan, Mengyuan and Chen, Hao and Yan, Binjie and Liu, Ting and Fu, Yuzhuo},
  journal={arXiv preprint arXiv:2110.05074},
  year={2021}
}

Ethical Considerations

Our task and dataset were created with careful attention to ethical questions, which we encountered throughout our work. Access to our dataset will be provided for research purposes only and with restrictions on redistribution. Additionally, as we filtered out the sensitive attribute name in our fine-grained attribute annotation, our dataset cannot be easily repurposed for unintended tasks. Importantly, we are very cautious of human-annotation procedure of large scale datasets towards the social and ethical implications. Furthermore, we do not consider the datasets for developing non-research systems without further processing or augmentation. We hope this fine-grained dataset will shed light into potential tasks for the research community to move forward.


LICENSE

  • The FineGPR Dataset and FineGPR-C caption is made available for non-commercial purposes only.
  • You will not, directly or indirectly, reproduce, use, or convey the FineGPR dataset and FineGPR-C caption dataset or any Content, or any work product or data derived therefrom, for commercial purposes.

Permissions of this strong copyleft license (GNU General Public License v3.0) are conditioned on making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. Contributors provide an express grant of patent rights.


Acknowledgements

This research was supported by the National Natural Science Foundation of China under Project (Grant No. 61977045). We would like to thank authors of FineGPR, and FineGPR-Caption dataset for their work. They provide tremendous efforts in these dataset to advance the research in this field. We also appreciate Zefang Yu, Mingye Xie and Guanjie You for insightful feedback and discussion.


For further questions and suggestions about our datasets and methods, please feel free to contact Suncheng Xiang: [email protected]

Owner
SunchengXiang
SunchengXiang
βœ‚οΈ EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video.

EyeLipCropper EyeLipCropper is a Python tool to crop eyes and mouth ROIs of the given video. The whole process consists of three parts: frame extracti

Zi-Han Liu 9 Oct 25, 2022
PyTorch implementation of Self-supervised Contrastive Regularization for DG (SelfReg)

SelfReg PyTorch official implementation of Self-supervised Contrastive Regularization for Domain Generalization (SelfReg, https://arxiv.org/abs/2104.0

64 Dec 16, 2022
Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX

ONNX-MobileStereoNet Python scripts for performing stereo depth estimation using the MobileStereoNet model in ONNX Stereo depth estimation on the cone

Ibai Gorordo 23 Nov 29, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
PyTorch code for Vision Transformers training with the Self-Supervised learning method DINO

Self-Supervised Vision Transformers with DINO PyTorch implementation and pretrained models for DINO. For details, see Emerging Properties in Self-Supe

Facebook Research 4.2k Jan 03, 2023
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Official implementation for "Symbolic Learning to Optimize: Towards Interpretability and Scalability"

Symbolic Learning to Optimize This is the official implementation for ICLR-2022 paper "Symbolic Learning to Optimize: Towards Interpretability and Sca

VITA 8 Dec 19, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
Unofficial implementation of Fast-SCNN: Fast Semantic Segmentation Network

Fast-SCNN: Fast Semantic Segmentation Network Unofficial implementation of the model architecture of Fast-SCNN. Real-time Semantic Segmentation and mo

Philip Popien 69 Aug 11, 2022
CN24 is a complete semantic segmentation framework using fully convolutional networks

Build status: master (production branch): develop (development branch): Welcome to the CN24 GitHub repository! CN24 is a complete semantic segmentatio

Computer Vision Group Jena 123 Jul 14, 2022
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Liu Minghua 73 Dec 15, 2022
A PyTorch implementation of EventProp [https://arxiv.org/abs/2009.08378], a method to train Spiking Neural Networks

Spiking Neural Network training with EventProp This is an unofficial PyTorch implemenation of EventProp, a method to compute exact gradients for Spiki

Pedro Savarese 35 Jul 29, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023