The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Overview

tldr-transformers

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Models: GPT- *, * BERT *, Adapter- *, * T5, etc.

BERT and T5 (art from the original papers)

     

Each set of notes includes links to the paper, the original code implementation (if available) and the Huggingface 🤗 implementation.

Here is an example: t5.

The transformers papers are presented somewhat chronologically below. Go to the " 👉 Notes 👈 " column below to find the notes for each paper.

This repo also includes a table quantifying the differences across transformer papers all in one table.

Contents

Quick_Note

This is not an intro to deep learning in NLP. If you are looking for that, I recommend one of the following: Fast AI's course, one of the Coursera courses, or maybe this old thing. Come here after that.

Motivation

With the explosion in papers on all things Transformers the past few years, it seems useful to catalog the salient features/results/insights of each paper in a digestible format. Hence this repo.

Models

Model Year Institute Paper 👉 Notes 👈 Original Code Huggingface 🤗 Other Repo
Transformer 2017 Google Attention is All You Need Skipped, too many good write-ups: ?
GPT-3 2018 OpenAI Language Models are Unsupervised Multitask Learners To-Do X X
GPT-J-6B 2021 EleutherAI GPT-J-6B: 6B Jax-Based Transformer (public GPT-3) X here x x
BERT 2018 Google BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT notes here here
DistilBERT 2019 Huggingface DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter DistilBERT notes here
ALBERT 2019 Google/Toyota ALBERT: A Lite BERT for Self-supervised Learning of Language Representations ALBERT notes here here
RoBERTa 2019 Facebook RoBERTa: A Robustly Optimized BERT Pretraining Approach RoBERTa notes here here
BART 2019 Facebook BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension BART notes here here
T5 2019 Google Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer T5 notes here here
Adapter-BERT 2019 Google Parameter-Efficient Transfer Learning for NLP Adapter-BERT notes here - here
Megatron-LM 2019 NVIDIA Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism Megatron notes here - here
Reformer 2020 Google Reformer: The Efficient Transformer Reformer notes here
byT5 2021 Google ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 notes here here
CLIP 2021 OpenAI Learning Transferable Visual Models From Natural Language Supervision CLIP notes here here
DALL-E 2021 OpenAI Zero-Shot Text-to-Image Generation DALL-E notes here -
Codex 2021 OpenAI Evaluating Large Language Models Trained on Code Codex notes X -

BigTable

All of the table summaries found ^ collapsed into one really big table here.

Alignment

Paper Year Institute 👉 Notes 👈 Codes
Fine-Tuning Language Models from Human Preferences 2019 OpenAI To-Do None

Scaling

Paper Year Institute 👉 Notes 👈 Codes
Scaling Laws for Neural Language Models 2020 OpenAI To-Do None

Memorization

Paper Year Institute 👉 Notes 👈 Codes
Extracting Training Data from Large Language Models 2021 Google et al. To-Do None
Deduplicating Training Data Makes Language Models Better 2021 Google et al. To-Do None

FewLabels

Paper Year Institute 👉 Notes 👈 Codes
An Empirical Survey of Data Augmentation for Limited Data Learning in NLP 2021 GIT/UNC To-Do None
Learning with fewer labeled examples 2021 Kevin Murphy & Colin Raffel (Preprint: "Probabilistic Machine Learning", Chapter 19) Worth a read, won't summarize here. None

Contribute

If you are interested in contributing to this repo, feel free to do the following:

  1. Fork the repo.
  2. Create a Draft PR with the paper of interest (to prevent "in-flight" issues).
  3. Use the suggested template to write your "tl;dr". If it's an architecture paper, you may also want to add to the larger table here.
  4. Submit your PR.

Errata

Undoubtedly there is information that is incorrect here. Please open an Issue and point it out.

Citation

@misc{cliff-notes-transformers,
  author = {Thompson, Will},
  url = {https://github.com/will-thompson-k/cliff-notes-transformers},
  year = {2021}
}

For the notes above, I've linked the original papers.

License

MIT

Owner
Will Thompson
Will Thompson
This repository contains the code for Direct Molecular Conformation Generation (DMCG).

Direct Molecular Conformation Generation This repository contains the code for Direct Molecular Conformation Generation (DMCG). Dataset Download rdkit

25 Dec 20, 2022
Convert ONNX model graph to Keras model format.

Convert ONNX model graph to Keras model format.

Grigory Malivenko 175 Dec 28, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Project code for weakly supervised 3D object detectors using wide-baseline multi-view traffic camera data: WIBAM.

WIBAM (Work in progress) Weakly Supervised Training of Monocular 3D Object Detectors Using Wide Baseline Multi-view Traffic Camera Data 3D object dete

Matthew Howe 10 Aug 24, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
Multi-Scale Geometric Consistency Guided Multi-View Stereo

ACMM [News] The code for ACMH is released!!! [News] The code for ACMP is released!!! About ACMM is a multi-scale geometric consistency guided multi-vi

Qingshan Xu 118 Jan 04, 2023
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
这是一个unet-pytorch的源码,可以训练自己的模型

Unet:U-Net: Convolutional Networks for Biomedical Image Segmentation目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Downl

Bubbliiiing 567 Jan 05, 2023
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Modular Probabilistic Programming on MXNet

MXFusion | | | | Tutorials | Documentation | Contribution Guide MXFusion is a modular deep probabilistic programming library. With MXFusion Modules yo

Amazon 100 Dec 10, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023