Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Overview

Multi-template MRI mouse brain atlas (both in vivo and ex vivo)

DOI

Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the original webpage)

List of atlases

  • FVB_NCrl: Brain MRI atlas of the wild-type FVB_NCrl mouse strain (used as the background strain for the rTg4510 which is a tauopathy model mice express a repressible form of human tau containing the P301L mutation that has been linked with familial frontotemporal dementia.)

  • NeAt: Brain MRI atlas of the whld-type C57BL/6J mouse strain. Atlas was created based on the original MRM NeAt mouse brain atlas (template images reoriented and bias-corrected, left/right structure label seperated, and 4th ventricle manual segmentation added).

  • Tc1 Cerebellum: TC1 mouse cerebellar cortical sublayer lobules.This mouse cerebellar atlas can be used for mouse cerebellar morphometry.

Sample images of atlas

These atlases can be used by the corresponding automatic mouse brain segmentation tools, which can use the in-vivo/ex-vivo atlas here to perform multi-atlas structural parellation based on non-rigid registration and label fusion.

Citation

  • If you use the segmented brain structure, or use the atlas along with the automatic mouse brain MRI segmentation tools, we ask you to kindly cite the following papers:

    • Ma D, Cardoso MJ, Modat M, Powell N, Wells J, Holmes H, Wiseman F, Tybulewicz V, Fisher E, Lythgoe MF, Ourselin S. Automatic structural parcellation of mouse brain MRI using multi-atlas label fusion. PloS one. 2014 Jan 27;9(1):e86576. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0086576

    • Ma D, Holmes HE, Cardoso MJ, Modat M, Harrison IF, Powell NM, O'Callaghan J, Ismail O, Johnson RA, O’Neill MJ, Collins EC, Mirza F. Beg, Karteek Popuri, Mark F. Lythgoe, and Sebastien Ourselin Study the longitudinal in vivo and cross-sectional ex vivo brain volume difference for disease progression and treatment effect on mouse model of tauopathy using automated MRI structural parcellation. Frontiers in Neuroscience. 2019;13:11. https://www.frontiersin.org/articles/10.3389/fnins.2019.00011

  • If you use the brain MR images of the FVB_NCrl mouse strain (the wildtype background of rTg4510), we ask you to kindly cite the following papers:

  • If you're using the mouse MRI T2* Active Starining Cerebellar atlas, we ask you to please kindly cite the following papers:

    • Ma, D., Cardoso, M. J., Zuluaga, M. A., Modat, M., Powell, N. M., Wiseman, F. K., Cleary, J. O., Sinclair, B., Harrison, I. F., Siow, B., Popuri, K., Lee, S., Matsubara, J. A., Sarunic, M. V, Beg, M. F., Tybulewicz, V. L. J., Fisher, E. M. C., Lythgoe, M. F., & Ourselin, S. (2020). Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI. NeuroImage, 117271. https://doi.org/https://doi.org/10.1016/j.neuroimage.2020.117271
    • Ma, D., Cardoso, M. J., Zuluaga, M. A., Modat, M., Powell, N., Wiseman, F., Tybulewicz, V., Fisher, E., Lythgoe, M. F., & Ourselin, S. (2015). Grey Matter Sublayer Thickness Estimation in the Mouse Cerebellum. In Medical Image Computing and Computer Assisted Intervention 2015 (pp. 644–651). https://doi.org/10.1007/978-3-319-24574-4_77

Reference

  • For the original information of the NeAt atlas, please please refer to the website: http://brainatlas.mbi.ufl.edu/, and the following two reference papers:
    • Ma Yu, Smith David, Hof Patrick R, Foerster Bernd, Hamilton Scott, Blackband Stephen J, Yu Mei, Benveniste Helene In Vivo 3D Digital Atlas Database of the Adult C57BL/6J Mouse Brain by Magnetic Resonance Microscopy. Front. Neuroanat. 2, 1 (2008).
    • Ma Yu, Hof P R, Grant S C, Blackband S J, Bennett R, Slatest L, McGuigan M D, Benveniste H A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135, 1203–15 (2005).

Funding

The works in this repositories received multiple funding from EPSRC, UCL Leonard Wolfson Experimental Neurology center, Medical Research Council (MRC), the NIHR Biomedical Research Unit (Dementia) at UCL and the National Institute for Health Research University College London Hospitals Biomedical Research center, the UK Regenerative Medicine Platform Safety Hub, and the Kings College London and UCL Comprehensive Cancer Imaging center CRUK & EPSRC in association with the MRC and DoH (England), UCL Faculty of Engineering funding scheme, Alzheimer Society Reseasrch Program from Alzheimer Society Canada, NSERC, CIHR, MSFHR Canada, Eli Lilly and Company, Wellcome Trust, the Francis Crick Institute, Cancer Research UK, and University of Melbourne McKenzie Fellowship.

You might also like...
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖
A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Code from the paper
Code from the paper "High-Performance Brain-to-Text Communication via Handwriting"

High-Performance Brain-to-Text Communication via Handwriting Overview This repo is associated with this manuscript, preprint and dataset. The code can

PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

This repo contains research materials released by members of the Google Brain team in Tokyo.
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Comments
  • NeAt parcellation labels

    NeAt parcellation labels

    @dancebean

    I was looking at the parcellation labels for the NeAt atlas in the docs folder and noticed a discrepancy between structure_label_list.csv and structure_label_list_hemisphere_separated.csv.

    In structure_label_list.csv, lines 23-24 indicate that the right hemispheric ROIs are labeled #1-20. In structure_label_list_hemisphere_separated.csv the right hemisphere is #21-40.

    Can you clarify which is correct?

    opened by araikes 0
Releases(1.0)
  • 1.0(Aug 24, 2020)

    Published along with the journal paper: Substantially thinner internal granular layer and reduced molecular layer surface in the cerebellum of the Tc1 mouse model of Down Syndrome – a comprehensive morphometric analysis with active staining contrast-enhanced MRI https://doi.org/10.1016/j.neuroimage.2020.117271

    Source code(tar.gz)
    Source code(zip)
  • 0.2(Nov 14, 2019)

Owner
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Physical Anomalous Trajectory or Motion (PHANTOM) Dataset

Physical Anomalous Trajectory or Motion (PHANTOM) Dataset Description This dataset contains the six different classes as described in our paper[]. The

0 Dec 16, 2021
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022
Code for our method RePRI for Few-Shot Segmentation. Paper at http://arxiv.org/abs/2012.06166

Region Proportion Regularized Inference (RePRI) for Few-Shot Segmentation In this repo, we provide the code for our paper : "Few-Shot Segmentation Wit

Malik Boudiaf 138 Dec 12, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
InsCLR: Improving Instance Retrieval with Self-Supervision

InsCLR: Improving Instance Retrieval with Self-Supervision This is an official PyTorch implementation of the InsCLR paper. Download Dataset Dataset Im

Zelu Deng 25 Aug 30, 2022
Boundary-aware Transformers for Skin Lesion Segmentation

Boundary-aware Transformers for Skin Lesion Segmentation Introduction This is an official release of the paper Boundary-aware Transformers for Skin Le

Jiacheng Wang 79 Dec 16, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Repository for the paper "PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation", CVPR 2021.

PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation Code repository for the paper: PoseAug: A Differentiable Pose Augme

Pyjcsx 328 Dec 17, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
This is the first released system towards complex meters` detection and recognition, which is implemented by computer vision techniques.

A three-stage detection and recognition pipeline of complex meters in wild This is the first released system towards detection and recognition of comp

Yan Shu 19 Nov 28, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023