[ICCV21] Official implementation of the "Social NCE: Contrastive Learning of Socially-aware Motion Representations" in PyTorch.

Overview

Social-NCE + CrowdNav

Website | Paper | Video | Social NCE + Trajectron | Social NCE + STGCNN

This is an official implementation for
Social NCE: Contrastive Learning of Socially-aware Motion Representations
Yuejiang Liu, Qi Yan, Alexandre Alahi, ICCV 2021

TL;DR: Contrastive Representation Learning + Negative Data Augmentations 🡲 Robust Neural Motion Models

Preparation

Setup environments follwoing the SETUP.md

Training & Evaluation

  • Behavioral Cloning (Vanilla)
    python imitate.py --contrast_weight=0.0 --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-baseline-data-0.50/policy_net.pth
    
  • Social-NCE + Conventional Negative Sampling (Local)
    python imitate.py --contrast_weight=2.0 --contrast_sampling='local' --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-local-data-0.50-weight-2.0-horizon-4-temperature-0.20-nboundary-0-range-2.00/policy_net.pth
    
  • Social-NCE + Safety-driven Negative Sampling (Ours)
    python imitate.py --contrast_weight=2.0 --contrast_sampling='event' --gpu
    python test.py --policy='sail' --circle --model_file=data/output/imitate-event-data-0.50-weight-2.0-horizon-4-temperature-0.20-nboundary-0/policy_net.pth
    
  • Method Comparison
    bash script/run_vanilla.sh && bash script/run_local.sh && bash script/run_snce.sh
    python utils/compare.py
    

Basic Results

Results of behavioral cloning with different methods.

Averaged results from the 150th to 200th epochs.

collision reward
Vanilla 12.7% ± 3.8% 0.274 ± 0.019
Local 19.3% ± 4.2% 0.240 ± 0.021
Ours 2.0% ± 0.6% 0.331 ± 0.003

Citation

If you find this code useful for your research, please cite our papers:

@article{liu2020snce,
  title   = {Social NCE: Contrastive Learning of Socially-aware Motion Representations},
  author  = {Yuejiang Liu and Qi Yan and Alexandre Alahi},
  journal = {arXiv preprint arXiv:2012.11717},
  year    = {2020}
}
@inproceedings{chen2019crowdnav,
    title={Crowd-Robot Interaction: Crowd-aware Robot Navigation with Attention-based Deep Reinforcement Learning},
    author={Changan Chen and Yuejiang Liu and Sven Kreiss and Alexandre Alahi},
    year={2019},
    booktitle={ICRA}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
Point detection through multi-instance deep heatmap regression for sutures in endoscopy

Suture detection PyTorch This repo contains the reference implementation of suture detection model in PyTorch for the paper Point detection through mu

artificial intelligence in the area of cardiovascular healthcare 3 Jul 16, 2022
[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

[ICCV 2021] A Simple Baseline for Semi-supervised Semantic Segmentation with Strong Data Augmentation

CodingMan 45 Dec 12, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Official re-implementation of the Calibrated Adversarial Refinement model described in the paper Calibrated Adversarial Refinement for Stochastic Semantic Segmentation

Elias Kassapis 31 Nov 22, 2022
Minimal implementation and experiments of "No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging".

No-Transaction Band Network: A Neural Network Architecture for Efficient Deep Hedging Minimal implementation and experiments of "No-Transaction Band N

19 Jan 03, 2023
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
Matthew Colbrook 1 Apr 08, 2022
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
An air quality monitoring service with a Raspberry Pi and a SDS011 sensor.

Raspberry Pi Air Quality Monitor A simple air quality monitoring service for the Raspberry Pi. Installation Clone the repository and run the following

rydercalmdown 24 Dec 09, 2022
Quantized models with python

quantized-network download .pth files to qmodels/: googlenet : https://download.

adreamxcj 2 Dec 28, 2021
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021