Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Related tags

Deep Learninglooking
Overview

Do pedestrians pay attention? Eye contact detection for autonomous driving

Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

alt text

Image taken from : https://jooinn.com/people-walking-on-pedestrian-lane-during-daytime.html . Results obtained with the model trained on JackRabbot, Nuscenes, JAAD and Kitti. The model file is available at models/predictor and can be reused for testing with the predictor.

Abstract

In urban or crowded environments, humans rely on eye contact for fast and efficient communication with nearby people. Autonomous agents also need to detect eye contact to interact with pedestrians and safely navigate around them. In this paper, we focus on eye contact detection in the wild, i.e., real-world scenarios for autonomous vehicles with no control over the environment or the distance of pedestrians. We introduce a model that leverages semantic keypoints to detect eye contact and show that this high-level representation (i) achieves state-of-the-art results on the publicly-available dataset JAAD, and (ii) conveys better generalization properties than leveraging raw images in an end-to-end network. To study domain adaptation, we create LOOK: a large-scale dataset for eye contact detection in the wild, which focuses on diverse and unconstrained scenarios for real-world generalization. The source code and the LOOK dataset are publicly shared towards an open science mission.

Table of contents

Requirements

Use 3.6.9 <= python < 3.9. Run pip3 install -r requirements.txt to get the dependencies

Predictor

Get predictions from our pretrained model using any image with the predictor. The scripts extracts the human keypoints on the fly using OpenPifPaf. The predictor supports eye contact detection using human keypoints only. You need to specify the following arguments in order to run correctly the script:

Parameter Description
--glob Glob expression to be used. Example: .png
--images Path to the input images. If glob is enabled you need the path to the directory where you have the query images
--looking_threshold Threshold to define an eye contact. Default 0.5
--transparency Transparency of the output poses. Default 0.4

Example command:

If you want to reproduce the result of the top image, run:

If you want to run the predictor on a GPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg

If you want to run the predictor on a CPU:

python predict.py --images images/people-walking-on-pedestrian-lane-during-daytime-3.jpg --device cpu --disable-cuda

Create the datasets for training and evaluation

Please follow the instructions on the folder create_data.

Training your models on LOOK / JAAD / PIE

You have one config file to modify. Do not change the variables name. Check the meaning of each variable to change on the training wiki.

After changing your configuration file, run:

python train.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Evaluate your trained models

Check the meaning of each variable to change on the evaluation wiki.

After changing your configuration file, run:

python evaluate.py --file [PATH_TO_CONFIG_FILE]

A sample config file can be found at config_example.ini

Annotate new images

Check out the folder annotator in order to run our annotator to annotate new instances for the task.

Credits

Credits to OpenPifPaf for the pose detection part, and JRDB, Nuscenes and Kitti datasets for the images.

Cite our work

If you use our work for your research please cite us :)

@misc{belkada2021pedestrians,
      title={Do Pedestrians Pay Attention? Eye Contact Detection in the Wild}, 
      author={Younes Belkada and Lorenzo Bertoni and Romain Caristan and Taylor Mordan and Alexandre Alahi},
      year={2021},
      eprint={2112.04212},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
VITA lab at EPFL
Visual Intelligence for Transportation
VITA lab at EPFL
Companion repository to the paper accepted at the 4th ACM SIGSPATIAL International Workshop on Advances in Resilient and Intelligent Cities

Transfer learning approach to bicycle sharing systems station location planning using OpenStreetMap Companion repository to the paper accepted at the

Politechnika Wrocławska - repozytorium dla informatyków 4 Oct 24, 2022
Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

3D Infomax improves GNNs for Molecular Property Prediction Video | Paper We pre-train GNNs to understand the geometry of molecules given only their 2D

Hannes Stärk 95 Dec 30, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch

A Fast and Stable GAN for Small and High Resolution Imagesets - pytorch The official pytorch implementation of the paper "Towards Faster and Stabilize

Bingchen Liu 455 Jan 08, 2023
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning | 斗地主AI

[ICML 2021] DouZero: Mastering DouDizhu with Self-Play Deep Reinforcement Learning DouZero is a reinforcement learning framework for DouDizhu (斗地主), t

Kwai Inc. 3.1k Jan 04, 2023
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Rule Extraction Methods for Interactive eXplainability

REMIX: Rule Extraction Methods for Interactive eXplainability This repository contains a variety of tools and methods for extracting interpretable rul

Mateo Espinosa Zarlenga 21 Jan 03, 2023
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Pearl The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid proto

38 Jan 01, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022