Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Overview

pipeline status codecov codestyle

Pearl

The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid prototyping of new adaptive decision making algorithms in the intersection between reinforcement learning (RL) and evolutionary computation (EC). As such, this is not intended to provide template pre-built algorithms as a baseline, but rather flexible tools to allow the user to quickly build and test their own implementations and ideas. A technical report can be found here.

Main Features

Features Pearl
RL algorithms (e.g. Actor Critic) ✔️
EC algorithms (e.g. Genetic Algorithm) ✔️
Hybrid algorithms (e.g. CEM-DDPG) ✔️
Multi-agent suppport ✔️
Tensorboard integration ✔️
Modular and extensible components ✔️
Opinionated module settings ✔️
Custom callbacks ✔️

User Guide

Installation

There are two options to install this package:

  1. pip install pearll
  2. git clone [email protected]:LondonNode/Pearl.git

Module Guide

  • agents: implementations of RL and EC agents where the other modular components are put together
  • buffers: these handle storing and sampling of trajectories
  • callbacks: inject logic for every step made in an environment (e.g. save model, early stopping)
  • common: common methods applicable to all other modules (e.g. enumerations) and a main utils.py file with some useful general logic
  • explorers: action explorers for enhanced exploration by adding noise to actions and random exploration for first n steps
  • models: neural network structures which are structured as encoder -> torso -> head
  • signal_processing: signal processing logic for extra modularity (e.g. TD returns, GAE)
  • updaters: update neural networks and adaptive/iterative algorithms
  • settings.py: settings objects for the above components, can be extended for custom components

Agent Templates

See pearll/agents/templates.py for the templates to create your own agents! For more examples, see specific agent implementations under pearll/agents.

Agent Performance

To see training performance, use the command tensorboard --logdir runs or tensorboard --logdir <tensorboard_log_path> defined in your algorithm class initialization.

Python Scripts

To run these you'll need to go to wherever the library is installed, cd pearll.

  • demo.py: script to run very basic demos of agents with pre-defined hyperparameters, run python3 -m pearll.demo -h for more info
  • plot.py: script to plot more complex plots that can't be obtained via Tensorboard (e.g. multiple subplots), run python3 -m pearll.plot -h for more info

Developer Guide

Scripts

Linux

  1. scripts/setup_dev.sh: setup your virtual environment
  2. scripts/run_tests.sh: run tests

Windows

  1. scripts/windows_setup_dev.bat: setup your virtual environment
  2. scripts/windows_run_tests.bat: run tests

Dependency Management

Pearl uses poetry for dependency management and build release instead of pip. As a quick guide:

  1. Run poetry add [package] to add more package dependencies.
  2. Poetry automatically handles the virtual environment used, check pyproject.toml for specifics on the virtual environment setup.
  3. If you want to run something in the poetry virtual environment, add poetry run as a prefix to the command you want to execute. For example, to run a python file: poetry run python3 script.py.

Credit

Citing Pearl

@misc{tangri2022pearl,
      title={Pearl: Parallel Evolutionary and Reinforcement Learning Library}, 
      author={Rohan Tangri and Danilo P. Mandic and Anthony G. Constantinides},
      year={2022},
      eprint={2201.09568},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

Pearl was inspired by Stable Baselines 3 and Tonic

You might also like...
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

Systemic Evolutionary Chemical Space Exploration for Drug Discovery
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

Deep learning with dynamic computation graphs in TensorFlow
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

PyTorch implementations of deep reinforcement learning algorithms and environments
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

Comments
  • Bump pillow from 9.0.0 to 9.0.1

    Bump pillow from 9.0.0 to 9.0.1

    Bumps pillow from 9.0.0 to 9.0.1.

    Release notes

    Sourced from pillow's releases.

    9.0.1

    https://pillow.readthedocs.io/en/stable/releasenotes/9.0.1.html

    Changes

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [@​radarhere, @​hugovk]
    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]
    Changelog

    Sourced from pillow's changelog.

    9.0.1 (2022-02-03)

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [radarhere, hugovk]

    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]

    Commits
    • 6deac9e 9.0.1 version bump
    • c04d812 Update CHANGES.rst [ci skip]
    • 4fabec3 Added release notes for 9.0.1
    • 02affaa Added delay after opening image with xdg-open
    • ca0b585 Updated formatting
    • 427221e In show_file, use os.remove to remove temporary images
    • c930be0 Restrict builtins within lambdas for ImageMath.eval
    • 75b69dd Dont need to pin for GHA
    • cd938a7 Autolink CWE numbers with sphinx-issues
    • 2e9c461 Add CVE IDs
    • See full diff in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Feature/hybrid

    Feature/hybrid

    Overhaul models and base agent structure to accommodate RL, MARL, EC in optimizing static functions and RL environments and hybrid algorithms combining RL and EC.

    opened by 09tangriro 1
  • MORE AGENTS

    MORE AGENTS

    The more agents created the better proof that the tools underlying work as intended.

    Agents should be tested on particular environments to ensure performance.

    feature good first issue 
    opened by 09tangriro 0
Releases(v0.4.1)
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
Implementation of Sequence Generative Adversarial Nets with Policy Gradient

SeqGAN Requirements: Tensorflow r1.0.1 Python 2.7 CUDA 7.5+ (For GPU) Introduction Apply Generative Adversarial Nets to generating sequences of discre

Lantao Yu 2k Dec 29, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
A curated list of programmatic weak supervision papers and resources

A curated list of programmatic weak supervision papers and resources

Jieyu Zhang 118 Jan 02, 2023
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
GND-Nets (Graph Neural Diffusion Networks) in TensorFlow.

GNDC For submission to IEEE TKDE. Overview Here we provide the implementation of GND-Nets (Graph Neural Diffusion Networks) in TensorFlow. The reposit

Wei Ye 3 Aug 08, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
RLBot Python bindings for the Rust crate rl_ball_sym

RLBot Python bindings for rl_ball_sym 0.6 Prerequisites: Rust & Cargo Build Tools for Visual Studio RLBot - Verify that the file %localappdata%\RLBotG

Eric Veilleux 2 Nov 25, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

67 Dec 21, 2022