Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Overview

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

This is the code for the paper Solving Graph-based Public Good Games with Tree Search and Imitation Learning by Victor-Alexandru Darvariu, Stephen Hailes and Mirco Musolesi, presented at NeurIPS 2021. If you use this code, please consider citing:

@inproceedings{darvariu_solving_2021,
  title = {Solving Graph-based Public Good Games with Tree Search and Imitation Learning},
  author = {Darvariu, Victor-Alexandru and Hailes, Stephen and Musolesi, Mirco},
  booktitle = {35th Conference on Neural Information Processing Systems (NeurIPS 2021)},
  year={2021},
}

License

MIT.

Prerequisites

Currently tested on Linux and MacOS (specifically, CentOS 7.4.1708 and Mac OS Big Sur 11.2.3), can also be adapted to Windows through WSL. The host machine requires NVIDIA CUDA toolkit version 9.0 or above (tested with NVIDIA driver version 384.81).

Makes heavy use of Docker, see e.g. here for how to install. Tested with Docker 19.03. The use of Docker largely does away with dependency and setup headaches, making it significantly easier to reproduce the reported results.

Configuration

The Docker setup uses Unix groups to control permissions. You can reuse an existing group that you are a member of, or create a new group groupadd -g GID GNAME and add your user to it usermod -a -G GNAME MYUSERNAME.

Create a file relnet.env at the root of the project (see relnet_example.env) and adjust the paths within: this is where some data generated by the container will be stored. Also specify the group ID and name created / selected above.

Add the following lines to your .bashrc, replacing /home/john/git/relnet with the path where the repository is cloned.

export RN_SOURCE_DIR='/home/john/git/relnet'
set -a
. $RN_SOURCE_DIR/relnet.env
set +a

export PATH=$PATH:$RN_SOURCE_DIR/scripts

Make the scripts executable (e.g. chmod u+x scripts/*) the first time after cloning the repository, and run apply_permissions.sh in order to create and permission the necessary directories.

Managing the containers

Some scripts are provided for convenience. To build the containers (note, this will take a significant amount of time e.g. 2 hours, as some packages are built from source):

update_container.sh

To start them:

manage_container_gpu.sh up
manage_container.sh up

To stop them:

manage_container_gpu.sh stop
manage_container.sh stop

To purge the queue and restart the containers (useful for killing tasks that were launched):

purge_and_restart.sh

Adjusting the number of workers and threads

To take maximum advantage of your machine's capacity, you may want to tweak the number of threads for the GPU and CPU workers. This configuration is provided in projectconfig.py. Additionally, you may want to enforce certain memory limits for your workers to avoid OOM errors. This can be tweaked in docker-compose.yml and manage_container_gpu.sh.

It is also relatively straightforward to add more workers from different machines you control. For this, you will need to mount the volumes on networked-attached storage (i.e., make sure paths provided in relnet.env are network-accessible) and adjust the location of backend and queue in projectconfig.py to a network location instead of localhost. On the other machines, only start the worker container (see e.g. manage_container.sh).

Setting up graph data

Synthetic data will be automatically generated when the experiments are ran and stored to $RN_EXPERIMENT_DIR/stored_graphs.

Accessing the services

There are several services running on the manager node.

  • Jupyter notebook server: http://localhost:8888
  • Flower for queue statistics: http://localhost:5555
  • Tensorboard (currently disabled due to its large memory footprint): http://localhost:6006
  • RabbitMQ management: http://localhost:15672

The first time Jupyter is accessed it will prompt for a token to enable password configuration, it can be grabbed by running docker exec -it relnet-manager /bin/bash -c "jupyter notebook list".

Accessing experiment data and results database

Experiment data and results are stored in part as files (under your configured $RN_EXPERIMENT_DATA_DIR) as well as in a MongoDB database. To access the MongoDB database with a GUI, you can use a MongoDB client such as Robo3T and point it to http://localhost:27017.

Some functionality is provided in relnet/evaluation/storage.py to insert and retrieve data, you can use it in e.g. analysis notebooks.

Running experiments

Experiments are launched from the manager container and processed (in a parallel way) by the workers. The file relnet/evaluation/experiment_conditions.py contains the configuration for the experiments reported in the paper, but you may modify e.g. agents, objective functions, hyperparameters etc. to suit your needs.

Then, you can launch all the experiments as follows:

Part 1: Hyperparameter optimization & evaluation for all aproaches except GIL

run_part1.sh

Part 2: Data collection for GIL using the UCT algorithm

run_part2.sh

Part 3: Training & hyperparameter optimization for GIL

run_part3.sh

Monitoring experiments

  • You can navigate to http://localhost:5555 for the Flower interface which shows the progress of processing tasks in the queue. You may also check logs for both manager and worker at $RN_EXPERIMENT_DATA_DIR/logs.

Reproducing the results

Jupyter notebooks are used to perform the data analysis and produce tables and figures. Navigate to http://localhost:8888, then notebooks folder.

All tables and result figures can be obtained by opening the GGNN_Evaluation.ipynb notebook, selecting the py3-relnet kernel and run all cells. Resulting .pdf figures and .tex tables can be found at $RN_EXPERIMENT_DIR/aggregate. There are additional notebooks provided for analyzing the results of hyperparameter optimization:

  • GGNN_Hyperparam_Optimisation.ipynb for UCT
  • GGNN_Hyperparam_Optimisation_IL.ipynb for GIL

Problems with jupyter kernel

In case the py3-relnet kernel is not found, try reinstalling the kernel by running docker exec -it -u 0 relnet-manager /bin/bash -c "source activate relnet-cenv; python -m ipykernel install --user --name relnet --display-name py3-relnet"

Owner
Victor-Alexandru Darvariu
Doctoral Student at University College London and The Alan Turing Institute.
Victor-Alexandru Darvariu
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows.

Swin-Transformer Swin-Transformer is basically a hierarchical Transformer whose representation is computed with shifted windows. For more details, ple

旷视天元 MegEngine 9 Mar 14, 2022
Implementation of Invariant Point Attention, used for coordinate refinement in the structure module of Alphafold2, as a standalone Pytorch module

Invariant Point Attention - Pytorch Implementation of Invariant Point Attention as a standalone module, which was used in the structure module of Alph

Phil Wang 113 Jan 05, 2023
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
S-attack library. Official implementation of two papers "Are socially-aware trajectory prediction models really socially-aware?" and "Vehicle trajectory prediction works, but not everywhere".

S-attack library: A library for evaluating trajectory prediction models This library contains two research projects to assess the trajectory predictio

VITA lab at EPFL 71 Jan 04, 2023
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Nikhil Iyer 9 Dec 27, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022