A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

Overview
docs/_static/final_logo.png

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

Introduction

spinor-gpe is high-level, object-oriented Python package for numerically solving the quasi-2D, psuedospinor (two component) Gross-Piteavskii equation (GPE), for both ground state solutions and real-time dynamics. This project grew out of a desire to make high-performance simulations of the GPE more accessible to the entering researcher.

While this package is primarily built on NumPy, the main computational heavy-lifting is performed using PyTorch, a deep neural network library commonly used in machine learning applications. PyTorch has a NumPy-like interface, but a backend that can run either on a conventional processor or a CUDA-enabled NVIDIA(R) graphics card. Accessing a CUDA device will provide a significant hardware acceleration of the simulations.

This package has been tested on Windows, Mac, and Linux systems.

View the documentation on ReadTheDocs

Installation

Dependencies

Primary packages:

  1. PyTorch >= 1.8.0
  2. cudatoolkit >= 11.1
  3. NumPy

Other packages:

  1. matplotlib (visualizing results)
  2. tqdm (progress messages)
  3. scikit-image (matrix signal processing)
  4. ffmpeg = 4.3.1 (animation generation)

Installing Dependencies

The dependencies for spinor-gpe can be installed directly into the new conda virtual environment spinor using the environment.yml file included with the package:

conda env create --file environment.yml

This installation may take a while.

Note

The version of CUDA used in this package does not support macOS. Users on these computers may still install PyTorch and run the examples on their CPU. To install correctly on macOS, remove the - cudatoolkit=11.1 line from the environment.yml file. After installation, you will need to modify the example code to run on the cpu device instead of the cuda device.

The above dependencies can also be installed manually using conda into a virtual environment:

conda activate <new_virt_env_name>
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
conda install numpy matplotlib tqdm scikit-image ffmpeg spyder

Note

For more information on installing PyTorch, see its installation instructions page.

To verify that Pytorch was installed correctly, you should be able to import it:

>>> import torch
>>> x = torch.rand(5, 3)
>>> print(x)
tensor([[0.2757, 0.3957, 0.9074],
        [0.6304, 0.1279, 0.7565],
        [0.0946, 0.7667, 0.2934],
        [0.9395, 0.4782, 0.9530],
        [0.2400, 0.0020, 0.9569]])

Also, if you have an NVIDIA GPU, you can test that it is available for GPU computing:

>>> torch.cuda.is_available()
True

CUDA Installation

CUDA is the API that interfaces with the computing resources on NVIDIA graphics cards, and it can be accessed through the PyTorch package. If your computer has an NVIDIA graphics card, start by verifying that it is CUDA-compatible. This page lists out the compute capability of many NVIDIA devices. (Note: yours may still be CUDA-compatible even if it is not listed here.)

Given that your graphics card can run CUDA, the following are the steps to install CUDA on a Windows computer:

  1. Install the NVIDIA CUDA Toolkit. Go to the CUDA download page for the most recent version. Select the operating system options and installer type. Download the installer and install it via the wizard on the screen. This may take a while. For reference, here is the Windows CUDA Toolkit installation guide.

    To test that CUDA is installed, run which nvcc, and, if instlled correctly, will return the installation path. Also run nvcc --version to verify that the version of CUDA matches the PyTorch CUDA toolkit version (>=11.1).

  2. Download the correct drivers for your NVIDIA device. Once the driver is installed, you will have the NVIDIA Control Panel installed on your computer.

Getting Started

  1. Clone the repository.
  2. Navigate to the spinor_gpe/examples/ directory, and start to experiment with the examples there.

Basic Operation

This package has a simple, object-oriented interface for imaginary- and real-time propagations of the pseudospinor-GPE. While there are other operations and features to this package, all simulations will have the following basic structure:

1. Setup: Data path and PSpinor object

>>> import pspinor as spin
>>> DATA_PATH = '<project_name>/Trial_###'
>>> ps = spin.PSpinor(DATA_PATH)

The program will create a new directory DATA_PATH, in which the data and results from this simulation trial will be saved. If DATA_PATH is a relative path, as shown above, then the trial data will be located in the /data/ folder. When working with multiple simulation projects, it can be helpful to specify a <project_name> directory; furthermore, the form Trial_### is convenient, but not strictly required.

2. Run: Begin Propagation

The example below demonstrates imaginary-time propagation. The method PSpinor.imaginary performs the propagation loop and returns a PropResult object. This object contains the results, including the final wavefunctions and populations, and analysis and plotting methods (described below).

>>> DT = 1/50
>>> N_STEPS = 1000
>>> DEVICE = 'cuda'
>>> res = ps.imaginary(DT, N_STEPS, DEVICE, is_sampling=True, n_samples=50)

For real-time propagation, use the method PSpinor.real.

3. Analyze: Plot the results

PropResult provides several methods for viewing and understanding the final results. The code block below demonstrates several of them:

>>> res.plot_spins()  # Plots the spin-dependent densities and phases.
>>> res.plot_total()  # Plots the total densities and phases.
>>> res.plot_pops()   # Plots the spin populations throughout the propagation.
>>> res.make_movie()  # Generates a movie from the sampled wavefunctions.

Note that PSpinor also exposes methods to plot the spin and total densities. These can be used independent of PropResult:

>>> ps.plot_spins()

4. Repeat

Likely you will want to repeat or chain together different segments of this structure. Demonstrations of this are shown in the Examples gallery.

Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
Kinetics-Data-Preprocessing

Kinetics-Data-Preprocessing Kinetics-400 and Kinetics-600 are common video recognition datasets used by popular video understanding projects like Slow

Kaihua Tang 7 Oct 27, 2022
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
PyTorch implementation of Federated Learning with Non-IID Data, and federated learning algorithms, including FedAvg, FedProx.

Federated Learning with Non-IID Data This is an implementation of the following paper: Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, Vik

Youngjoon Lee 48 Dec 29, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Official Implementation of DE-DETR and DELA-DETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-DETR and DELA-DETR in

Wen Wang 61 Dec 12, 2022
python 93% acc. CNN Dogs Vs Cats ( Pytorch )

English | 简体中文(测试中...敬请期待) Cnn-Classification-Dog-Vs-Cat 猫狗辨别 (pytorch版本) CNN Resnet18 的猫狗分类器,基于ResNet及其变体网路系列,对于一般的图像识别任务表现优异,模型精准度高达93%(小型样本)。 项目制作于

apple ye 1 May 22, 2022
Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

An official implementation of paper Data-Uncertainty Guided Multi-Phase Learning for Semi-supervised Object Detection

11 Nov 23, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022