Distributed Computing for AI Made Simple

Overview

build

drawing

Project Home   Blog   Documents   Paper   Media Coverage

Join Fiber users email list [email protected]

Fiber

Distributed Computing for AI Made Simple

This project is experimental and the APIs are not considered stable.

Fiber is a Python distributed computing library for modern computer clusters.

  • It is easy to use. Fiber allows you to write programs that run on a computer cluster level without the need to dive into the details of computer cluster.
  • It is easy to learn. Fiber provides the same API as Python's standard multiprocessing library that you are familiar with. If you know how to use multiprocessing, you can program a computer cluster with Fiber.
  • It is fast. Fiber's communication backbone is built on top of Nanomsg which is a high-performance asynchronous messaging library to allow fast and reliable communication.
  • It doesn't need deployment. You run it as the same way as running a normal application on a computer cluster and Fiber handles the rest for you.
  • It it reliable. Fiber has built-in error handling when you are running a pool of workers. Users can focus on writing the actual application code instead of dealing with crashed workers.

Originally, it was developed to power large scale parallel scientific computation projects like POET and it has been used to power similar projects within Uber.

Installation

pip install fiber

Check here for details.

Quick Start

Hello Fiber

To use Fiber, simply import it in your code and it works very similar to multiprocessing.

import fiber

if __name__ == '__main__':
    fiber.Process(target=print, args=('Hello, Fiber!',)).start()

Note that if __name__ == '__main__': is necessary because Fiber uses spawn method to start new processes. Check here for details.

Let's take look at another more complex example:

Estimating Pi

import fiber
import random

@fiber.meta(cpu=1)
def inside(p):
    x, y = random.random(), random.random()
    return x * x + y * y < 1

def main():
    NUM_SAMPLES = int(1e6)
    pool = fiber.Pool(processes=4)
    count = sum(pool.map(inside, range(0, NUM_SAMPLES)))
    print("Pi is roughly {}".format(4.0 * count / NUM_SAMPLES))

if __name__ == '__main__':
    main()

Fiber implements most of multiprocessing's API including Process, SimpleQueue, Pool, Pipe, Manager and it has its own extension to the multiprocessing's API to make it easy to compose large scale distributed applications. For the detailed API guild, check out here.

Running on a Kubernetes cluster

Fiber also has native support for computer clusters. To run the above example on Kubernetes, fiber provided a convenient command line tool to manage the workflow.

Assume you have a working docker environment locally and have finished configuring Google Cloud SDK. Both gcloud and kubectl are available locally. Then you can start by writing a Dockerfile which describes the running environment. An example Dockerfile looks like this:

# example.docker
FROM python:3.6-buster
ADD examples/pi_estimation.py /root/pi_estimation.py
RUN pip install fiber

Build an image and launch your job

fiber run -a python3 /root/pi_estimation.py

This command will look for local Dockerfile and build a docker image and push it to your Google Container Registry . It then launches the main job which contains your code and runs the command python3 /root/pi_estimation.py inside your job. Once the main job is running, it will start 4 subsequent jobs on the cluster and each of them is a Pool worker.

Supported platforms

  • Operating system: Linux
  • Python: 3.6+
  • Supported cluster management systems:
    • Kubernetes (Tested with Google Kubernetes Engine on Google cloud)

We are interested in supporting other cluster management systems like Slurm, if you want to contribute to it please let us know.

Check here for details.

Documentation

The documentation, including method/API references, can be found here.

Testing

Install test dependencies. You'll also need to make sure docker is available on the testing machine.

$ pip install -e .[test]

Run tests

$ make test

Contributing

Please read our code of conduct before you contribute! You can find details for submitting pull requests in the CONTRIBUTING.md file. Issue template.

Versioning

We document versions and changes in our changelog - see the CHANGELOG.md file for details.

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Cite Fiber

@misc{zhi2020fiber,
    title={Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods},
    author={Jiale Zhi and Rui Wang and Jeff Clune and Kenneth O. Stanley},
    year={2020},
    eprint={2003.11164},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowledgments

  • Special thanks to Piero Molino for designing the logo for Fiber
Owner
Uber Open Source
Open Source Software at Uber
Uber Open Source
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Predict the output which should give a fair idea about the chances of admission for a student for a particular university

Predict the output which should give a fair idea about the chances of admission for a student for a particular university.

ArvindSandhu 1 Jan 11, 2022
Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them

Sleep stages are classified with the help of ML. We have used 4 different ML algorithms (SVM, KNN, RF, NN) to demonstrate them.

Anirudh Edpuganti 3 Apr 03, 2022
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Microsoft 5.6k Jan 07, 2023
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Spark development environment for k8s

Local Spark Dev Env with Docker Development environment for k8s. Using the spark-operator image to ensure it will be the same environment. Start conta

Otacilio Filho 18 Jan 04, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
Automatically create Faiss knn indices with the most optimal similarity search parameters.

It selects the best indexing parameters to achieve the highest recalls given memory and query speed constraints.

Criteo 419 Jan 01, 2023
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processi

Salesforce 2.8k Jan 05, 2023
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement.

Organic Alkalinity Sausage Machine A Python toolbox to churn out organic alkalinity calculations with minimal brain engagement. Getting started To mak

Charles Turner 1 Feb 01, 2022
MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training

MosaicML Composer MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training. We aim to ease th

MosaicML 2.8k Jan 06, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. 10x Larger Models 10x Faster Trainin

Microsoft 8.4k Dec 30, 2022
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022