The Ultimate FREE Machine Learning Study Plan

Overview

The Ultimate FREE Machine Learning Study Plan

A complete study plan to become a Machine Learning Engineer with links to all FREE resources. If you finish the list you will be equipped with enough theoretical and practical experience to get started in the industry! I tried to limit the resources to a minimum, but some courses are extensive.

Watch the video on YouTube for instructions:
Alt text
https://www.youtube.com/watch?v=dYvt3vSJaQA

IMPORTANT:

  • This list is not sponsored by any of the mentioned links! I did a lot of the courses myself and can highly recommend them!
  • This list takes a lot of time and effort to finish if you want to do it properly! The list does not look that long, but don't underestimate it.

How to use the Plan:

  • For theory lectures: Follow along, take notes, and repeat the notes afterwards.
  • For practical lectures/courses: Follow along, take notes. If they provide exercises, do them!!! Do not just google the answer, but try to solve it yourself first!
  • For coding tutorials: Code along, and after the video try to code it on your own again.
  • Step 3 is critical! Your theoretical knowledge is worthless if you don't know how to apply it to real world problems! Do as many personal projects and competitions as you can! You don't have to wait with step 3 until you finished the other parts, I recommend starting with a side project or kaggle competition after you finished part 1.1 (Andrew Ng's course).

The Plan

0. Prerequisites

1. Basics Machine Learning

2. Deep Learning

Optional:

3. Competitions and Own Projects

4. Prep for Interviews

Next Level

  • Make your own projects to show what you have learned.
  • Reproduce paper and implement the algorithms.
  • Write a blog to explain what you have learned.
  • Contribute to ML/DL related open source projects (sklearn, pytorch, fastai, ...).
  • Get into Kaggle competitions.

Further readings

GitHub:

Further resources added by the community

Contributions are welcome! If you can recommend any other ressources, feel free to open a pull request :)

Owner
Patrick Loeber (Python Engineer)
I create free content about Python and Machine Learning on YouTube and my website.
Patrick Loeber (Python Engineer)
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Python library for multilinear algebra and tensor factorizations

scikit-tensor is a Python module for multilinear algebra and tensor factorizations

Maximilian Nickel 394 Dec 09, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
Real-time domain adaptation for semantic segmentation

Advanced-Machine-Learning This repository contains the code for the project Real

Andrea Cavallo 1 Jan 30, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022
Tribuo - A Java machine learning library

Tribuo - A Java prediction library (v4.1) Tribuo is a machine learning library in Java that provides multi-class classification, regression, clusterin

Oracle 1.1k Dec 28, 2022
The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it inside a loop of Design, Model Development and Operations.

MLOps The MLOps is the process of continuous integration and continuous delivery of Machine Learning artifacts as a software product, keeping it insid

Maykon Schots 25 Nov 27, 2022
MLflow App Using React, Hooks, RabbitMQ, FastAPI Server, Celery, Microservices

Katana ML Skipper This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable

Tom Xu 8 Nov 17, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Facebook Research 29 Dec 02, 2022
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022
Banpei is a Python package of the anomaly detection.

Banpei Banpei is a Python package of the anomaly detection. Anomaly detection is a technique used to identify unusual patterns that do not conform to

Hirofumi Tsuruta 282 Jan 03, 2023
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
Machine Learning Study 혼자 해보기

Machine Learning Study 혼자 해보기 기여자 (Contributors) ✨ Teddy Lee 🏠 HongJaeKwon 🏠 Seungwoo Han 🏠 Tae Heon Kim 🏠 Steve Kwon 🏠 SW Song 🏠 K1A2 🏠 Wooil

Teddy Lee 1.7k Jan 01, 2023
Random Forest Classification for Neural Subtypes

Random Forest classifier for neural subtypes extracted from extracellular recordings from human brain organoids.

Michael Zabolocki 1 Jan 31, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
Land Cover Classification Random Forest

You can perform Land Cover Classification on Satellite Images using Random Forest and visualize the result using Earthpy package. Make sure to install the required packages and such as

Dr. Sander Ali Khowaja 1 Jan 21, 2022