A Simple Key-Value Data-store written in Python

Overview

mercury-db

GitHub followers GitHub forks GitHub Repo stars Lines of code GitHub PyPI

This is a File Based Key-Value Datastore that supports basic CRUD (Create, Read, Update, Delete) operations developed using Python.

The data store will support the following functional requirements:

  1. A new key-value pair can be added to the data store using the Create operation. The key is always a string - capped at 32chars. The value is always a JSON object-capped at 16KB.
  2. A Read operation on a key can be performed by providing the key, and receiving the value in response, as a JSON object.
  3. A Delete operation can be performed by providing the key.
  4. Every key supports setting a Time-To-Live property when it is created. This property is optional. If provided, it will be evaluated as an integer defining the number of seconds the key must be retained in the data store. Once the Time-To-Live for a key has expired, the key will no longer be available for Read or Delete operations.

The data store will also support the following non-functional requirements:

  1. The size of the file storing data must never exceed 1GB.
  2. More than one client process cannot be allowed to use the same file as a data store at any given time
  3. A client process is allowed to access the data store using multiple threads, if it desires to The data store must therefore be thread-safe.

Overview

The application has been developed as a library so that users can just import it and create an instance of the class and work with the data store by invoking relevant methods. The application satisfies both the functional and non-functional requirements mentioned above.

File Structure

  • src/mercury_db/datastore.py - The library that contains the methods for performing CRUD Operations.
  • setup.py

Installation

pip install mercury-db

Usage

Consider the following examples:

from src.mercury_db.datastore import *

ds = DataStore()
ds.create('myname', 'Vaidhyanathan', 60)
print(ds.read('myname'))
ds.create('New Delhi', 'India Gate')
ds.delete('myname')
print(ds.read('New Delhi'))
print(ds.read('name'))

Development Environment

  • OS: Linux (Ubuntu) - Linux-5.11.0-41
  • Language(s) used: Python

The application doesn't have any OS specific dependencies and should run without any problems in Mac and Windows as well.

Bugs/Requests

Please use the GitHub issue tracker to submit bugs or request features.

License

Copyright Vaidhyanathan S M, 2021

Distributed under the terms of the MIT license, py-dsa is free and open source software.

Owner
Vaidhyanathan S M
Software Developer | Native Android & Flutter Developer | Python | C++ | Technical Blogger @Medium
Vaidhyanathan S M
Text-to-SQL in the Wild: A Naturally-Occurring Dataset Based on Stack Exchange Data

SEDE SEDE (Stack Exchange Data Explorer) is new dataset for Text-to-SQL tasks with more than 12,000 SQL queries and their natural language description

Rupert. 83 Nov 11, 2022
DNA sequence classification by Deep Neural Network

DNA sequence classification by Deep Neural Network: Project Overview worked on the DNA sequence classification problem where the input is the DNA sequ

Mohammed Jawwadul Islam Fida 0 Aug 02, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Image Completion with Deep Learning in TensorFlow

Image Completion with Deep Learning in TensorFlow See my blog post for more details and usage instructions. This repository implements Raymond Yeh and

Brandon Amos 1.3k Dec 23, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp Learning to Regrasp by Learning to Place, CoRL 2021. Introduction We propose a point-cloud-based system for robots to predict a seque

Shuo Cheng (成硕) 18 Aug 27, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
Advances in Neural Information Processing Systems (NeurIPS), 2020.

What is being transferred in transfer learning? This repo contains the code for the following paper: Behnam Neyshabur*, Hanie Sedghi*, Chiyuan Zhang*.

Google Research 36 Aug 26, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
Source code for Acorn, the precision farming rover by Twisted Fields

Acorn precision farming rover This is the software repository for Acorn, the precision farming rover by Twisted Fields. For more information see twist

Twisted Fields 198 Jan 02, 2023
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022